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Measuring nothing 

• The EU has set a number based emission standards for light and heavy duty Diesel 
vehicles  

– The standards are based on “solid” particles larger than 23 nm 

– Light-duty, Euro 5b, September 2011 
• The standard is 6 x 1011 particles/km 

• The mass emission standard is 4.5 mg/km, but the number standard corresponds to about 0.15 to 
0.7 mg/km, depending on DGN – a much tighter standard! 

– Heavy-duty, Euro VI, January 2013 
• The standards are 6 x 1011 and 8 x 1011 particles/kWh on the WHTC and the WHSC, 

respectively 

• The mass emission standard is 10 mg/kWh, but the number standard corresponds to about 0.2 to 
0.9 mg/kWh, depending on DGN – again a much tighter standard! 

• The US so far plans to limit measurements to mass 
– Current US heavy-duty standard is 13 mg/kWh 

– New US/CARB light-duty standards are 1.8 and 0.6 mg/km for 2017 and 2025 (maybe 
2022), respectively. These correspond to roughly 8 and 3 mg/km 

• It is very challenging to accurately measure filter mass at 13 mg/kWh. The new 
US/CARB standards represent an even greater challenge. 

– Stoichiometric burn SI engines have about 13% water – limiting lowest dilution factor 

– Light-duty cycle uses separate filters for 3 phases so a total mass of perhaps 30 mg is 
distributed on 3 filters each having 5+ mg artifact 

– We hope the CRC E99 project figures all of this out 

• Unfortunately the US hates number measurements 
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Real time ash measurements 
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Importance of ash emissions 

• Diesel engines - build-up and 
plugging of DPF 

– Increased pressure drop - 
eventually 

– Reduction of useful filter life, 
increased cleaning frequency 

• Gasoline engines 

– Deposition in 3-way catalyst 
leads to poisoning 

– Same issues as diesel if GPF 
used 

– Solid nanoparticle emissions if 
GPF not used, especially with 
metallic additives 

• Relationship to engine lube oil 
consumption mechanisms 

Ash distribution in exhaust filter channels 

(Heibel and Bhargava, 2007) 

3-way catalyst poisoning by ash deposits 

(Franz, et al., 2005) 
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Particle formation history – 2 s in the life of 

an engine exhaust aerosol 

Kittelson, D. B., W. F. Watts, and J. P. Johnson 2006.  “On-road and Laboratory Evaluation of Combustion 

Aerosols Part 1: Summary of Diesel Engine Results,” Journal of Aerosol Science 37, 913–930. 
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Engine ash emissions 

Sappok and Wong, 2007 

• Non-combustible fraction of diesel aerosol 

• Derived from metallic lube oil additives and 

engine wear metals 

• Metallic particles tend to ‘decorate’ 

carbonaceous exhaust particles 

• But form separate particles at sufficiently 

high metal to soot ratios 
Jung, et al., 2005 

Jung and Kittelson, 2005 
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Catalytic stripper measurements - nuclei mode usually 

volatile but shows nonvolatile (ash) core at light load 

 4.5 LTier 4/Interim IIIB offroad diesel engine 
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Typical engine exhaust particle size distribution by 

mass, number and surface area 
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Diesel exhaust or 

other metallic ash 

containing aerosol

Oxidize soot and 

hydrocarbons within high 

temperature tube furnace 

Stable metal oxides and other 

refractory metal compounds 

are formed or survive high 

temperature tube furnace

Cooled particles measured using 

real/near-real time particle 

instruments

High temperature oxidation method (HTOM) 

overview 
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Gladis, 2010 
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Engine exhaust measurements: volume weighted size 

distributions 
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Transient ash emissions 
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Lube oil spray apparatus 
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Gladis, 2010 
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Lube oil spray results: evaporation and oxidation of 

specially blended lube oils 
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Lube oil spray results: composition of specially 

blended lube oils and ash survival fraction 

Base stock

104A 101A 100A 103A 102A

B <5 <5 <5 285 <5

Ca <2 <2 3946 <2 3724

Mg <2 <2 8 ~500 <2

P 2 976 1052 <10 13

S 55 1998 802 57 8804

Zn <5 1008 <5 <5 <5

Blend # Element Compound

Concentration 

[ppm] Expected Measured Measured/Expected

100A Ca CaCO3 3946 2.9E-03 7.3E-03 2.51

101A Zn ZnSO4 1008 5.9E-04 9.6E-06 0.02

102A Ca CaSO4 3724 3.4E-03 7.2E-03 2.10

103A Mg MgCO3 500 5.3E-04 7.8E-04 1.48

Metallic Volume Fraction

Oil composition, ppm, mass 

Ash compound survival fraction 

What happened to the zinc compounds? 

Why is survival fraction so high for Ca and Mg? 

Gladis, 2010 
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New setup for transient ash measurements 
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Transient ash measurements during speed 

ramps at heavy and light loads 
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Real time black carbon and real time ash show 

similar time response 

• This is reasonable as we expect much of the ash to be 

decorating soot particles (black carbon) 

• But it could also mean that there is carbon 

breakthrough, incomplete oxidation of particles 

• Concentrations of ash downstream of oven are very 

low so downstream ash measurements are 

challenging 

• Decided to borrow LII instrument to make these 

measurements 
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Black carbon measured downstream of oven using 

Artium LII300 during temperature ramp 
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Raising the oven temperature to 1150 C eliminates 

nearly all of the carbon breakthrough 
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Ongoing issues 

• Need additional metal survival calibration, ICPMS 

• What is happening to the zinc? 

• Carbon breakthrough, interference 

– Appears to be solved using 1150 C 

– Likely associated with larger particles with insufficient 
time to fully oxidize 

– Raise oven temperature 

• Material limitations 

• Ash volatilization and losses 

– Remove coarse PM upstream of oven 

• How much ash is carried by these particles? 

• May be especially important on transients 
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Conclusions 

• We have developed a method that allows us to 

measure exhaust ash emissions from engines in near 

real time. 

• Results suggest significant ash emission during 

engine transients, both up and down in load and speed 

• Concerns 

– Lack of response to zinc 

– Carbon breakthrough 
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Questions 



 

Center for Diesel Research

References 

• Heibel A, Bhargava R. Advanced Diesel particulate filter design for lifetime 
pressure drop solution in light duty applications. Fuels and Emissions Conference. 
2007.  

• Hill S, Sytsma S. A systems approach to oil consumption. SAE International 
Congress and Exposition. 1991.  

• Kittelson D, Watts W, Johnson J. On-road and laboratory evaluation of combustion 
aerosols-Part1: Summary of diesel engine results. J Aerosol Sci. 2006;37(8):913-
930.  

• Kittelson D. Engines and nanoparticles: A review. J Aerosol Sci. 1998;29(5):575-
588.  

• Sappok A, Wong V. Detailed chemical and physical characterization of ash species 
in Diesel exhaust entering aftertreatment systems. SAE World Congress. 2007.  



 

Center for Diesel Research

Lube oil consumption pathways 

• Piston rings 

– Atomization 

– Ring collapse 

• Leaky valve seals 

• Crank case 

ventilation and 

exhaust gas 

recirculation 

(EGR) 

 

Diagram of lube oil pathways on a typical engine 

(modified from Hill and Systasma, 1991)  
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Typical engine result, VW TDI, light load cruise, 

stable ash residue at 1100 – 1150 C 
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