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Here Soot = Black Carbon (BC)

Focus of experiments in our lab
1. lce nucleation on BC particles
under cirrus cloud conditions
Optical properties (i.e.,
absorption) of BC containing
particles

* Internal and external mixtures
of BC containing particles



Absorption enhancement (lensing)
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Discrepancy between ambient/source
and core-shell results

Ambient vs Laboratory Biomass burning source
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» Gap between well-characterized laboratory and field (ambient and biomass burning) measurements,
either due to particle variability or population mixing
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Particle morphology versus population mixing
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Liu et al., 2015 - Mich. Tech. Univ.

o
%52
%/
2’

6}.
&
4 %
%,
./

1.0 5

0.8 1

0.6 1

0.4 1

Particle types (%)

0.2 1

Cambridge particle meeting 2018

Core-Shell structure has an increased
optical cross section which enhances
the absorption of light

Core-shell is the most common
representation in models

Other types of internal and external
mixtures are prevalent in the
atmosphere

What are the relative effects of
morphology versus population
mixing?



Objective — study coagulated BC particle types

Refractive Org

e Bare soot, thinly coated
and thickly coated were
Core shell extensively studied in
previous campaigns

dimer

Engulfed soot

e Data is scarce for the dimer
structure of coagulated
particles (complex
experiments)

Compact soot
agglomerate
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Characteristic times of bipolar coagulation

Total concentration Tau

Known challenges... lea S2h

1e5 5.5h

le6 30min
le7 3min

Kim et al. 2005

1. Coagulation — slow process

For mono >1*10°> cm?3

2. Low number concentrations of
dimers generated, near detection 520 '
limit of optical measurements
R W

Petters & Rothfuss (2016)
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Charge-enhanced coagulation
Process steps

. Generation of two polydispersed particle distributions

. Size select monodisperse particle distributions with opposite
charges

. Neutralization of the charge by Coagulation

. Removal of all remaining charged particles I.e. separation of the
dimer

. Recharging the neutral particles to detect the neutral dimer with a
CPMA (Centrifugal Particle Mass Analyser, Cambustion Ltd.)

. Measuring optical properties of dimer particles!



Experimental setup

(1) Finding dimer mass
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Experimental plan

w
o

* DOS-DOS (liquid-liquid) experiments
* Optimize experiments
* Assess methodologies

25

2.0

* DOS-Soot experiments over “Region of
Interest” in NR-PM/BC ratio and E_,
space

1.5

Absorption Enhancement (532 nm)

1.0

e Study more interesting mixtures, | o
including ammonium sulfate-soot and el B
secondary organic aerosol (SOA)-soot

Region of interest

NR-PM/BC mass ratio
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Identification of mass-distribution peaks
(re-neutralized positive monodispersed particles)

Mixing time
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DOS-DOS liguid coalescence — optimized conditions
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6/26/2018 Cambridge particle meeting 2018



Soot-DOS coagulation
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» Clear coagulated
(doubled) neutral
mass observed!

——Negative neutral DOS 2.5fg
——Positive neutral Soot 2fg

——coag DOS+Soot
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Optical detection (DOS-Soot) using CAPS PMssa
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* During baseline measurements, CAPS signal is zero
20% Absorption enhancement (Eabs) was calculated for the dimer
« Single Scattering Albedo is higher than for pure soot and lower than for pure DOS



E abs

Preliminary results
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» Most data follow Mie theory with some exceptions
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SSA of coagulated dimers are similar ot
higher than pure soot particles, as expected

MAC of coagulated dimers and pure soot
particles are similar but in some cases are
higher, which was unexpected

Observation: DOS likely “wetting” soot
particles on experimental time-frame
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summary

* Rarely studied coagulation of monomers was achieved and reproduced in
a laboratory setup

* The process was optimized to allow shorter coagulation time

e Several types of monomers were coagulated (DOS-DOS, Soot-DOS, Soot-
A.S, Soot-A.N, Soot-SOA)

* The process was optimized to allow optical detection (CAPS-PMssa, SP2)

* Preliminary results of Eabs, MAC and SSA for uniform distribution of
Soot-DOS dimers are reported



Future work

* Higher Rbc ratios

* viscous aerosols (e.g. SOA) to reduce core shell structures

* Include coagulated dimers into population mixing studies

Study humidity influence on coagulation efficiency
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Soot Photometer
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CAPS PM,., Monitor

Scattering and Extinction

« Extinction — Cavity Attenuated Phase Shift Technique
« Scattering — Inverse Integrating Nephelometer
Integrating Sphere with Lambertian Surface
Minimal Bias w.r.t. Scattering Angle
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Ammonium sulphate + soot dimers
SEM sample collection

S$4700 1.0kV 8.8mm x30.0k SE(U)
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