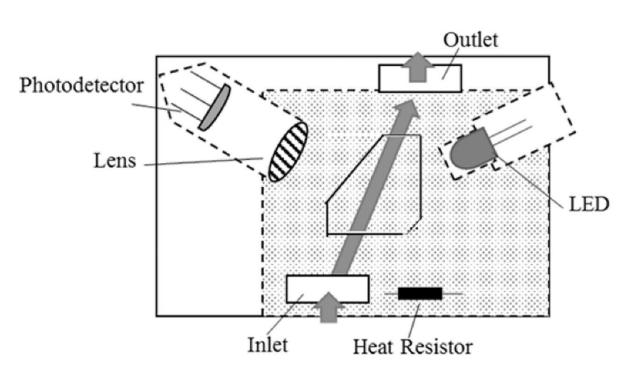

Low cost PM sensors; are they suitable for measuring subtle particle variations in ambient or indoor air?

28.06.2019 Scott Lowther PhD Student

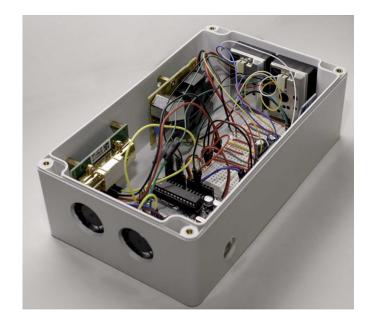
What are low cost PM sensors?

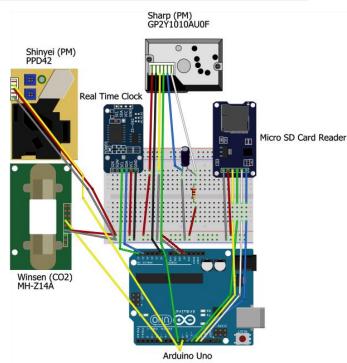
- <£1000
- Lightweight
- Portable
- Robust
- Easily operated


What has driven the development of low-cost sensors?

- Need for
 - High-spatial distribution measurements
 - Low cost personal exposure measurements for epidemiology
 - Detecting pollution hotspots and supplementing emission inventories
- Increasing public awareness of air pollution
- Technology advancements have allowed for miniaturisation of sensors and reductions in cost

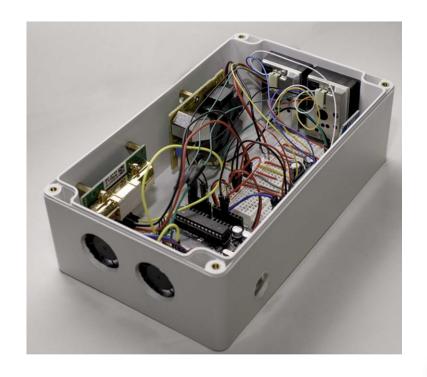
Principle of operation


Detection Limit = 300nm


- Measurement of scattered light
- LED illuminates particles
- Scattered light is measured by a photodetector at ~90-120°
- Scattered light can infer particle number or particle mass

Integrating low-cost sensors

- Require
 - Integration with a microcontroller
 - Data management system

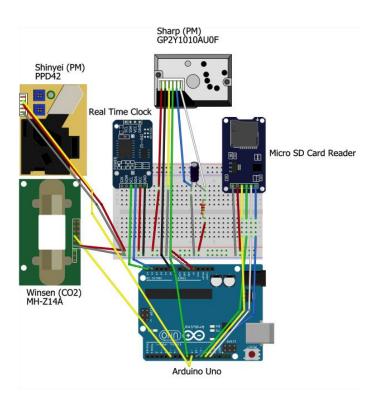


Advantages

- Low cost
- Good linearity vs Reference grade
- Portable lightweight
- Easily operated (important for community measurement/engagement)
- Allow for spatial distribution measurements

Linearity vs Reference Grade

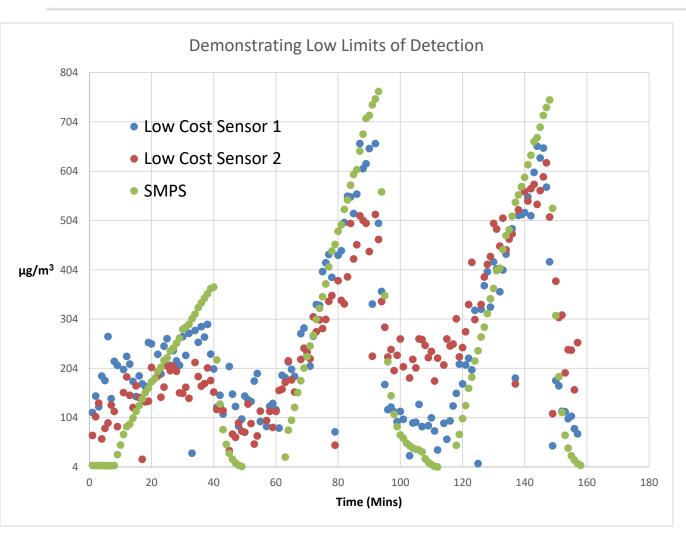
- Laboratory evaluations R²=0.90-0.99 ¹
- Real world performance R²=0.4-0.90 ²
 - These are much lower than Laboratory tests which often cannot reflect the variable nature of PM or meteorological conditions present in the real world.


1 Wang, Y., Li, J., ... Biswas, P., 2015. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Science and Technology 49, 1063–1077. doi:10.1080/02786826.2015.1100710
2 Sayahi, T., Butterfield, A., Kelly, K.E., 2019. Long-term field evaluation of the Plantower PMS low-cost particulate matter

2 Sayahi, I., Butterfield, A., Kelly, K.E., 2019. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environmental Pollution 932–940. doi:10.1016/j.envpol.2018.11.065

Limitations

- Need integration into a separate system
- Low limits of detection
- Meteorological effects
 - Limited response to temperature
 - High response to humidity
- No set flow rate
- The high costs of low cost sensors
- Short lifetimes (6 months-years)
 - Due to lifetimes of optics
- Unable to detect UFPs


Low Limits of Detection

- The lowest limit that deviates significantly from blank measurements.
- In laboratory experiments: 6-30μg/m³ ¹
- This limitation reduces the viability of the sensors in measuring exposures, which will often be lower than this threshold

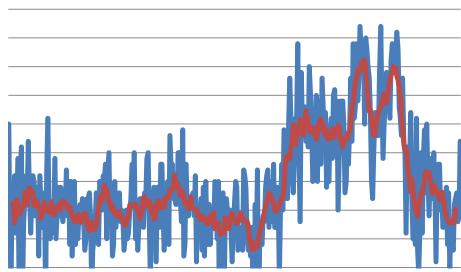
Low Limits of Detection


Extremely low sensitivity at low concentrations

The high costs of low cost sensors

- Integration into a device
- Individual calibration of devices
- Servicing costs (replacing batteries)
- Data processing

These far exceed costs of the sensors themselves



Data Processing

- Low cost sensors commonly have low signal to noise ratios
- Therefore digital filters often need to be applied to the data before it is useful
- Common filters include
 - Sliding window filters
 - Low-pass filters

Indoor Applications

- Smart Homes
 - Air purifiers
 - Ventilation systems
 - Energy efficiency vs Indoor Air Quality
- Measuring exposures to high pollution events
- Spatial distributions in high pollution environments
- As it stands these sensors appear unable to detect subtle differences in concentrations in indoor environments

Conclusions (Future Outlook)

- Improvement of sensors

 - Sensitivity to UFPs
 - Lifetimes
 - Limits of detection
 Understanding performance under ambient

Environmental Conditions

- Improving data handling
- Accepting limitations and understanding applications
- Importance to public awareness and participation