

Chamber Studies of Diesel Aerosol

James Allan^{1,2}, Dantong Liu¹, Gordon McFiggans¹, James Whitehead¹, M. Rami Alfarra^{1,2}, Shaofei Kong^{1,3}, Paul Williams^{1,2}, Sophie Haslet¹, Yu-Chieh Ting¹, Jacqueline Hamilton⁴, Rachel Holmes⁴, Kelly Pereira⁴, Roy Harrison^{5,6}, Salim Alam⁵, David Beddows^{2,5}

¹University of Manchester, ²National Centre for Atmospheric Science, ³Nanjing University Institute of Science and Technology, ⁴University of York, ⁵University of Birmingham, ⁶King Abdulaziz University

Motivation

- Diesel PM is a major issue in urban air quality, particularly at roadside
- Diesel VOCs are suggested to have a very high SOA yield, but not very well represented in air quality models
- Black carbon is known to have a significant radiative forcing effect, particularly on local scales, but is complicated by morphology and coatings
- Light-duty diesel, in spite of representing 33% of the UK light duty fleet, is not very well studied by the atmospheric community

Engine Rig

- Armfield dynamometer rig
- VW 1.9L SDI engine
 - Normally aspirated
 - Oxidising catalyst and silencer fitted
 - EURO 4 equivalent
- Controllable according to revs and load

Manchester Aerosol Chamber (MAC)

- 18 m³ teflon bag
- Collapsible, can be filled and emptied in minutes
- Can be illuminated by a combination of halogen bulbs and a filtered xenon arc lamp, designed to simulate the solar spectrum
- Sampling points for online instruments
- Entire contents can be collected on a filter during emptying

Experimental Procedures

- Dilution: Bag initially filled with scrubbed and filtered air and a brief injection of exhaust fumes is performed (typically <1s)
 - Mixing occurs through convection
 - Concentrations are referenced to CO₂ concentrations
 - Further dilution can be performed by partially flushing the bag and refilling with clean air
- Photochemistry: Bag is illuminated with simulated solar light (UV and visible)
- Additional injections: Gasoline or biogenic VOCs added

Advantages

- Engine is a controllable and atmospherically relevant source of soot particles and VOCs
- Dilutions to atmospheric concentrations and measurements with atmospheric instrumentation, so relevant to atmospheric measurements
- Can capture transient engine running conditions
 - Not possible with a dilution tunnel
- Can perform atmospheric processing simulations over a period of hours
 - Semivolatile repartitioning
 - Photochemistry
- Can perform detailed characterisation work over extended time periods
 - Some instrument scans can take hours

Instruments

- Gases
 - NO_x, CO_2, O_3
 - VOCs (2D GC)
- Online particle microphysics
 - CPC
 - DMPS/SMPS
 - CPMA
- Online particle composition
 - SP2
 - AMS
 - OCEC
 - Thermal denuder / catalytic stripper

- Online particle hygroscopicity
 - HTDMA
 - Monodisperse CCN
- Online Particle Optical Properties
 - PASS
 - CAPS PM_{SSA}
- Offline Particle Composition
 - 2D GC
 - OCEC
 - LC-ESI-MS

Progress to Date

- Two major campaigns (COMPART 1 and 2) completed, focusing on chemistry
- Two minor campaigns (COMPART 1.5 and 2.5) completed, focusing on optical properties and comparisons with direct exhaust instruments
- One major campaign (COMPART 3) to come this summer

Engine Mapping

- Data converted to tailpipe equivalent using CO₂ concentrations
- Play with multiple variables, e.g. speed, load, exhaust treatment

Too much NO_x!

- Discovered the NO concentrations were too high to allow photochemistry to proceed as it suppressed ozone and peroxy concentrations
- Possible solutions:
 - Add an excess of ozone
 - Would need silly concentrations
 - Add a source of additional radicals (e.g. HONO)
 - Possibly creates an unrealistic chemical regime
 - Been done before in other chambers
 - Add more VOCs to rebalance the VOC:NO_x ratio
 - Could also contribute to SOA, so the diesel SOA would not be measurable

'Cold Idle'

Filter 21: **15/08/14** – 2000 RPM, 40% Load, warm, 10:1

- Abundance of aromatic compounds
- Abundance of polar compounds
- Very little constituents larger than C₂₃

- Abundance of aliphatic compounds
- Other aromatic compounds are still present, but with lower abundance
- Two UCMs: 1) C₁₆ C₂₃
 2) C₂₃ C₃₀

SS (%)

CCN and AMS view

- Detectable trends in cloud condensation nuclei (CCN) behaviour, but atmospherically insignificant
- Differences in chemical composition of particles seen by Aerosol Mass Spectrometer (AMS)

Gas phase view

- Online VOCs quantified using a dual trap 2D GC
- As well as quantifying SOA precursors, the decay of well-characterised VOCs can be used to infer OH concentrations

Adding VOCs

Particle Shape

- Effective density measured using CPMA-SMPS combination
- 'High EC' is 2000 rpm with 10 minute warmup
- Cold idle particles spherical, 'high EC' particles and denuded cold idle particles fractal

Optical Properties

Data from Aerodyne CAPS PM_{SSA}

- Effect of adding SOA coatings:
 - Increase in size
 - Increase in absorption
 - Bigger increase in scattering
 - Increase in single scattering albedo
- Qualitatively, this is all expected
- Quantitatively modelling these is a subject of debate and a source of uncertainty in atmospheric radiative transfer models

DMT Single Particle Soot Photometer (SP2)

CPMA – SP2 data products

- Measures single-particle refractory black carbon (rBC) mass through laser induced incandescence (LII)
- Single particle scattering cross section at 1064 nm through leading edge only (LEO) fitting
- Coupled with a CPMA, gives scattering cross section as a function of rBC mass fraction, which can be compared with model outputs

Measurements

Normal running = 'high EC'

Ambient measurements taken in Manchester around

bonfire night 2014

Single Particle Optical Properties

- Thickly-coated particles (M_{coating/rBC} >2) consistent with core-shell Mie
 - Also consistent with other internally mixed models
- Thinly-coated particles consistent with external mixing, i.e. independent scattering of core and coating
 - Probably due to coating material filling in voids or small gaps in agglomerates

Implications

- Because of the large real refractive index of BC in the NIR, the coating enhancement in NIR scattering is analogous to the coating enhancement in optical absorption
 - Absorption not measured in this experiment because the DMT PASS did not have sufficient signal-to-noise and CAPS PM_{SSA} does not measure absorption directly
- This implies a hybrid microphysical model of optical properties is appropriate, with negligible absorption enhancement for thinly-coated particles
- May help to reconcile some of the seemingly contradictory measurements of atmospheric absorption enhancement

Conclusions

- The COMPART experiments are currently ongoing in Manchester
- Emissions from a light duty diesel engine coupled to a dynamometer are fed into an 18 m³ teflon bag
- Atmospheric processing is simulated and the aerosol studied using a wide variety of instrumentation
- Interesting contrasts in the aerosol composition, shape and optical properties have been noted with engine running conditions
- Optical measurements suggest that a hybrid model may be most appropriate to describe properties
- Watch this space!

Acknowledgements

 COMPART is funded by the Natural Environment Research Council ref: NE/K014838/1

