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Motivations

» Particles of different sizes, masses or morphologies often have different volatility, charging,
chemical or hygroscopic properties.

» Benefits of a truly monodispersed source:
* Probe physics of non-spherical particles on-line;
« Characterize structure of non-spherical particles; and

« Calibrate other devices using non-spherical particles.
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Equivalent Particle Diameters
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Particle Relaxation Time (7):
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where d. is the volume equivalent diameter, the diameter of a sphere with the same
volume as the patrticle of interest.
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Challenges of Non-Spherical Particles

« For spherical, homogeneous particles being monodispersed in one domain, such as aerodynamic
diameter (d,), translates directly to others, such as particle mobility diameter (d,,) and mass (m).

 However this direct monodisperse translation between particle properties no longer occurs for non-
spherical and/or non-homogenous particles.
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Particle Diameter, dp (nm)

Example: Different particle masses have same aerodynamic diameter

« The effective density of aggregate morphologies often decrease with increasing particle size.
Therefore, smaller particles with lower mass («x centrifugal force, F.) and drag (F4) may have the same
relaxation time (t) or aerodynamic diameter (d,) as larger particles with higher mass and drag.

« This characteristic often results in non-spherical particle sources having a “narrow” aerodynamic size
distribution.
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Differential Mobility Analyzer (DMA) — Charge:Drag

: le » Classifier consists of two concentric cylinders with a potential
: voltage (V) between them.

- Classifies aerosol by particle electrical mobility (Z,) - a

particle’s ability to move from an known electrostatic force. This
is directly related to Mobility Diameter (d,,):

Cunningham slip
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i ﬁ Trajectory g # of charges mobility
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g 3 < * Gas flows (dominated by sheath flow, Q) move the particles
i | : axially, while the electrostatic force moves the particles radially.
E 5 « Smaller and/or higher charged particles are dominated by the
g § electrostatic force and impact the inner cylinder.

E : : » Bigger and/or lower charged particles are dominated by their
; Q! Qexn § drag, limiting their radial movements and thus remaining
b yly v[ I I 1 entrained in the sheath flow.
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Common Approach to Generate “Monodisperse” Sources

Bipolar Charge

Polydispersed Conditioner

Aerosol —<( @ [—>

Source

DMA
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—(Monodispersed in d,,

but some multiply-charged)

« A common solution to remove multiply-charged particle from the DMA is an impactor,
but its effectiveness is limited for non-spherical particles due to:

» Low resolution and discrete setpoints of the impactor; and

« Narrow aerodynamic size distribution of non-spherical sources.

« Also if the particles are non-spherical being monodisperse in mobility diameter may not
translate to other domains. For example, two aggregates could have the same drag, but

drastically different masses.
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DMA Challenges: Multiple-Charging
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Identify if multiply-charged particles are being classified
in the DMA (i.e. orange and red labels) by:

 Peaks above upstream DMA setpoint (dp,1 =1 = 200 nm):

qus =2 = qps = land qus = 3 = qps = 2

* A blended peak between the peaks for downstream charge
states 1 (dpz,4=1 = 200 nm) and 2 (dp,5 =2 = 129.4 nm):
qus =2 = qps =3 and qys =3 = qps =4 &5

Challenging to determine what portion of each peak

are actually multiply-charged particles from the
upstream DMA.




Aerodynamic Aerosol Classifier (AAC) — Mass:Drag

« Can be thought of like a “rotating DMA” — has axial sheath flow, but radial force is centrifugal not
electrostatic
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Adapted from F. Tavakoli & J. S. Olfert (2013)

« Classifies aerosol by particle relaxation time (1) — the time taken for a particle to match the flow
to which it is introduced. This is directly related to Aerodynamic Diameter (d.):

. Cunningham slip\
- Smaller particles match the sheath flow sooner I C.(dy)pod? _ 201
» Larger particles do not match the sheath flow PN 18u mw?(r + 15)*L

mass mobility
« Doesn’t rely on particle charging—true monodisperse aerosol
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AAC Challenges: Multiple-Masses

Measured Mobility Equivalent of AAC Classified Measured Mobility Equivalent of AAC Mini-CAST soot
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« As previously demonstrated, classifying non-spherical particles by d, will be monodisperse in that domain,
but may include different particle masses. These different masses causes “broadening” when the d,
monodispersed source is measured in other domains, such as mobility diameter (d,,,).
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Multiple Domain Tandem Classifier System

Previous studies have demonstrated measuring the size-resolved effective density of particles
with the following tandem classifier systems:

+ Tandem AAC-DMA (Tavakoli and Olfert, 2014)
+ Tandem DMA-CPMA (Olfert et al., 2007)
+ Tandem AAC-CPMA (Johnson et al., 2018)

Any of these systems (i.e. two classifiers of different measurands in series) can also generate
an aerosol source that is monodisperse in d,, d,, and m, and therefore in morphology:

/.T =/7;nB\ Assuming the particle charge states
AAC CPMA DMA in the DMA and CPMA are known.

However, using an AAC in the tandem system is preferred as its setpoint can be
sufficiently lower than the second classifier (CPMA or DMA) to limit multiple-charging
effects (i.e. AAC acts as variable, high-resolution impactor)
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A DMA-CPMA or CPMA-DMA system would still have multiple-charging effects
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Tandem AAC-DMA System
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Therefore, a AAC-DMA system overcomes the classification challenges of a standalone AAC (different
particle masses) or standalone DMA (multiply-charged particles and/or different particle masses).
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Selecting Particle “Morphology” — SEM images of
classified mini-CAST soot

AAC 35 nm & DMA80 nm  AAC 56 nm & DMA 150 nm AAC 90 nm & DMA 300 nm
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— WD = 59mm Photo No. = 876 Time :17:40:25 3 Phate Ne. Timi 1 3 Photo No. = 1036 Time :19:59:34
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Selecting Particle “Morphology” — Same d

AAC 90 nm & DMA 300 nm AAC 90 nm & DMA 360 nm AAC 90 nm & DMA 430 nm
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Summary

» This study demonstrates that a AAC-DMA system (i.e. two classifiers of different measurands) generates
a non-spherical particle source that is monodisperse in d,, d,, and m, and therefore morphology.

« The tandem setup overcomes many of the challenges when operating any of the aerosol classifiers as
standalone instruments.

* Using an AAC in the tandem system is preferred to limit multiple-charging effects in the DMA or CPMA.
» This methodology was verified by:

« Comparing DMA scans of the classified particles to identify additional peaks due to classifying
multiply-charged particles and/or peak broadening from classifying different particle masses; and

« SEM images of the tandem classified particles.
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Questions?

Jon Symonds: jps@cambustion.com
Tyler Johnson: tjj31@cam.ac.uk
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