Kinetics, changes in particle size and internal structure of two Diesel soots and a carbon black during oxidation in oxygen or nitrogen dioxide

C.J. Tighe*, A.N. Hayhurst, J.S. Dennis

Dept. of Chemical Engineering and Biotechnology, University of Cambridge

M.V. Twigg

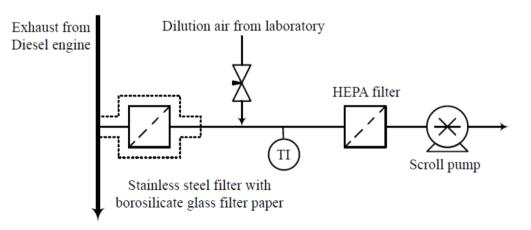
Johnson Matthey Plc.

*Current affiliation: Dept. of Chemical Engineering, Imperial College London. Email: c.tighe@imperial.ac.uk

Presentation Overview

- Introduction
- Characteristics of the soots and the oxidants
- Description of the oxidation experiments
- Effect of heat-treatment
- Results of the oxidation experiments
- Comparison of physical models of burning soot
- Pore evolution during oxidation of a carbon black (Printex U)
- Conclusions

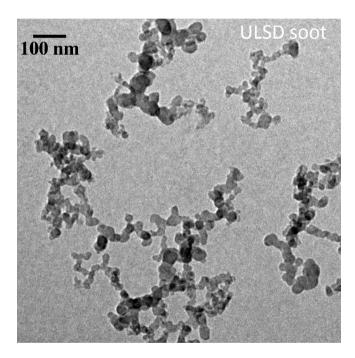
Introduction


- This presentation juxtaposes two studies of the oxidation of two Diesel soots:
 - 20 880 ppm NO₂, 300 550°C [1]
 - 2.7 24.4 vol.% O₂, 450 550°C [2]
- Conditions approaching those in a regenerating Diesel particulate filter (DPF).
- Both studies used the same samples of soots from a Diesel engine fuelled by:
 - Ultra low sulphur Diesel (ULSD soot)
 - A mixture of 90% biodiesel and 10% ULSD (B90 soot)
- The oxidation of a carbon black (Printex U) by O₂ was also studied.

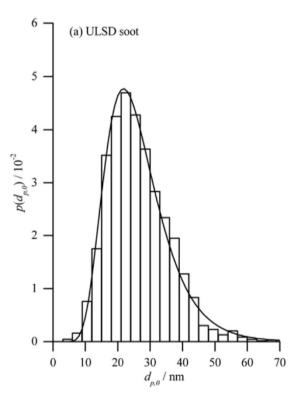
- [1] Tighe, C.J., Hayhurst, A.N., Twigg, M.V., Dennis, J.S., 2012. The kinetics of oxidation of Diesel soots by NO₂, Combust. Flame 159, 77-90.
- [2] Tighe, C.J., Hayhurst, A.N., Twigg, M.V., Dennis, J.S., 2016. The kinetics of oxidation of Diesel soots and a carbon black (Printex U) by O_2 with reference to changes in both size and internal structure of the spherules during burnout, *Carbon* 107, 20-35.

Characteristics of the Soots – Preparation

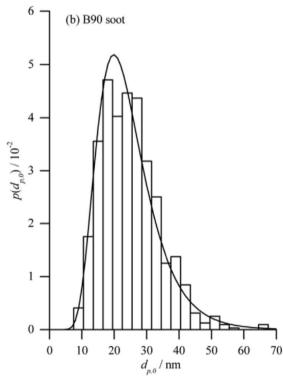
- Soots collected from exhaust of 4-stroke, 2.1 | Ford Mondeo Diesel engine.
- Air flow reduced during B90 runs to allow for oxygen in fuel (~ 10 wt.%).
- Borosilicate glass filter heated to 200°C.
- Printex U supplied by Degussa, produced by combustion of natural gas


Operating characteristic	ULSD	B90
Equivalence ratio, f	0.24	0.23
Exhaust temperature (°C)	230	234
Filter Smoke Number (FSN)	1.5	1.1
Engine speed (rpm)	1500	
Load ^a (bar)	3.	5
Oil pressure (bar)	26	60
Fuel injection timing ^b (°)/injected mass (mg)	5/7	7.5
Pilot injection timing ^b (°)/injected mass (mg)	5/7	7.5

^a Brake mean effective pressure.


^b Crank angle before top dead centre.

Characteristics of the Soots – Size Distributions



N particles measured by TEM were described by log-normal distribution:

$$p(d_{p,0}) = \frac{1}{d_{p,0} \ln(\sigma_{gm}) \sqrt{2\pi}} \exp \left\{ -\frac{\left[\ln(d_{p,0} / (d_{p,0})_{gm}) \right]^2}{2 \left[\ln(\sigma_{gm}) \right]^2} \right\} \quad \text{Eq. (1)}$$

(1)
$$N = 2329$$
$$\ln(\sigma_{gm}) = 0.36$$
$$(d_{p,0})_{gm} = 24.8$$

$$N = 1068$$

 $\ln(\sigma_{gm}) = 0.38$
 $(d_{p,0})_{qm} = 21.8$

Characteristics of the Soots – N₂ Adsorption

- Surface area (BET method) and pore diameters (BJH) measured by N₂ adsorption
- Volumetric mean diameter of "pores" similar to diameters of spherules.
- No evidence for micropores less than 2 nm:
 - Interplanar distance between lamellae in soot is ~ 0.36 nm [3].
- Sauter mean diameters determined using either S_{BET} or size distributions by TEM:
 - Very close agreement between these values for both Diesel soots.
 - *i.e.* the soots may be treated as separate, tiny spherules.

Morphological measurements. Here, S_{BET} is the BET area, S_{pore} is the surface area in pores with ID between 2 and 200 nm, as determined by the BJH model, $d_{pore} = 4V_{pore}/S_{pore}$, where V_{pore} is the volume in pores narrower in diameter than 200 nm from the BJH model.

Sample	S_{BET} (m ² g ⁻¹)	S_{pore} (m ² g ⁻¹)	$d_{pore}\left(\mathrm{nm}\right)$
ULSD soot	108 ± 5	116 ± 6	18.7 ± 1 21.6 ± 1 20.7 ± 1
B90 soot	103 ± 5	110 ± 6	
Printex U	73 ± 4	76 ± 4	

[3] O.I. Smith, 1981. Fundamentals of soot formation in flames with application todiesel engine particulate emissions, Prog. Energy Combust. Sci. 7, 275–291.

Characteristics of the Soots – Composition

- Elemental analysis of carbon (C), hydrogen (H) and nitrogen (N).
- Mass remaining after combustion in O₂ at 950°C was the ash content.
- Hydrocarbon fraction ~ 7H assuming long alkane with ratio C:H as in CH₂.
- Deficit in the elemental analysis is mostly adsorbed oxygen.
- $w_{O,mono}$ is an estimate of the mass fraction of a monolayer of oxygen on area S_{BET} .

Elemental composition of soots and Printex U (% by mass), together with errors, and the fraction of oxygen (% by mass), $w_{O,mono}$, constituting a monolayer adsorbed on the BET surface area

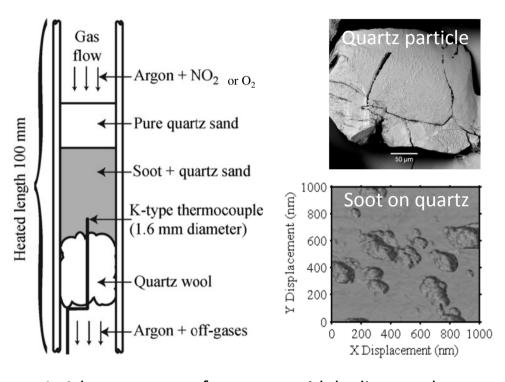
Sample	C (±0.5)	H (±0.1)	N (±0.1)	Ash (±0.5)	Deficit (±1.0)	$w_{O,mono}$
ULSD soot	84.0	1.2	0	1.8	7.7	23
B90 soot		1.6	0	3.3	11.1	22
Printex U		0.6	0	0.1	7.5	16

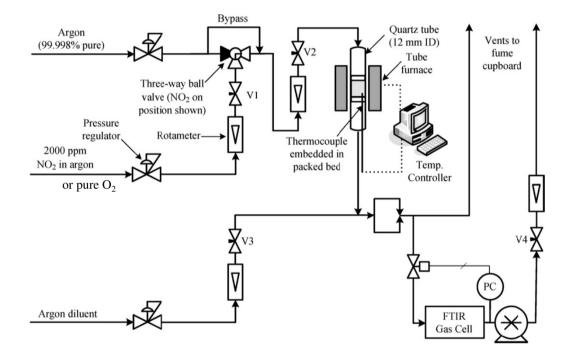
Characteristics of the Oxidants

	o No	0=0
Bond energy ^[4] (red) / kJ mol ⁻¹	305	498
Kinetic diameter / nm	$0.40 - 0.51^{[5]}$	0.35 ^[6]
Molecular diffusivity ^[7] in N ₂ at 500 °C / cm ² s ⁻¹	0.83	1.04
Molecular weight, $M / g \text{ mol}^{-1}$	46	32
Knudsen diffusivity ^[8] in 1 nm pore at 500 ℃ / cm ² s ⁻¹	2.0×10^{-3}	2.4×10^{-3}

• Most significant differences are in energy required to abstract O and kinetic diameter.

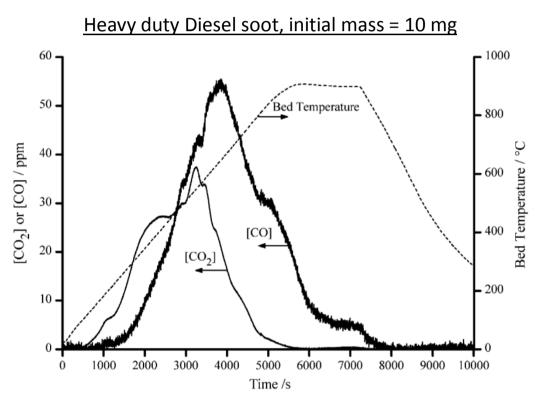
^[4] Lide, D. R. (ed.), 1996. Handbook of Chemistry and Physics, 77th edn, CRC Press.


^[5] Xie, L., Liu, F., Liu, K., Shi, X., He, H., 2014. Catal. Sci. & Technol 4, 1104 – 1110.


^[6] Breck, D.W., 1974. Zeolite Molecular Sieves: Structure, Chemistry and Use, John Wiley & Sons,

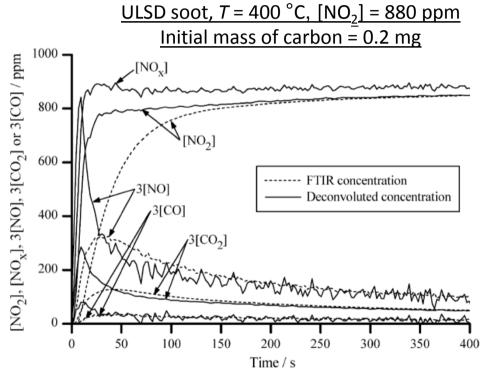
^[7] Yaws, Carl L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel.

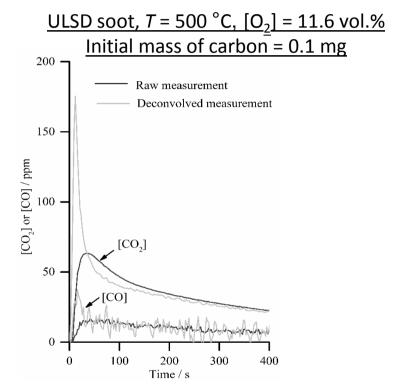
^[8] Ruthven, D. M., 1984. Principles of Adsorption and Adsorption Processes, 1st edn, John Wiley & Sons. $D_K = 4850 d_{pore} (T/M)^{0.5}$


Description of Oxidation Experiments

- 1. A known mass of soot was widely dispersed over particles of quartz sand (typically 0.008 wt.%)
- 2. The mixture of soot and sand was placed in a quartz reactor (O.D. 12.5 mm), forming a packed bed.
- 3. [CO₂], [CO], [NO₂] and [NO] in off-gases continuously measured.
- 4. Packed bed heated to 550 °C with only Ar flowing over it.
- 5. Held for at 1 h then cooled to desired oxidation temperature.
- 6. Oxidant switched on, defined as t = 0, until burnout complete

Effect of Heat-Treatment

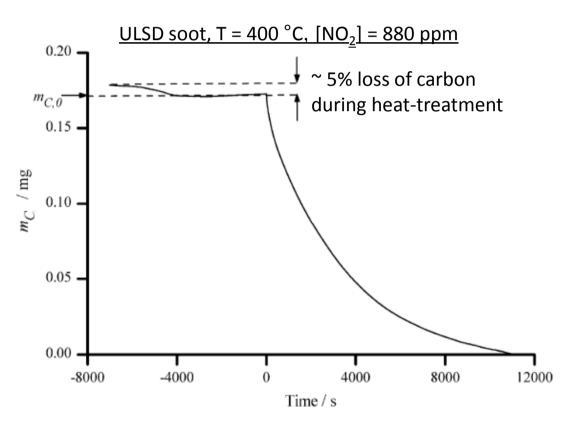



- Diesel soots were heated at 550°C in argon, prior to oxidation in NO₂ or O₂.
- Small (ppm) concentrations of CO and CO₂ were detected:
 - Loss of carbon between measurements i, interval Δt (= 2.3 s), given by:

$$\Delta m_{C,i} = 1.2 \times 10^{-2} F([CO]_i + [CO_2]_i) \Delta t / \text{kg}$$

- Molar flowrate, $F = 1.91 \times 10^{-4} \text{ mol s}^{-1}$
- Heat-treatment resulted in loss of ~ 5% of the initial mass of carbon.
- Printex U heat-treated at 900°C, resulting in loss of ~ 1.5% of initial mass of carbon.
- No water vapour or hydrocarbons were detected during heat-treatment.

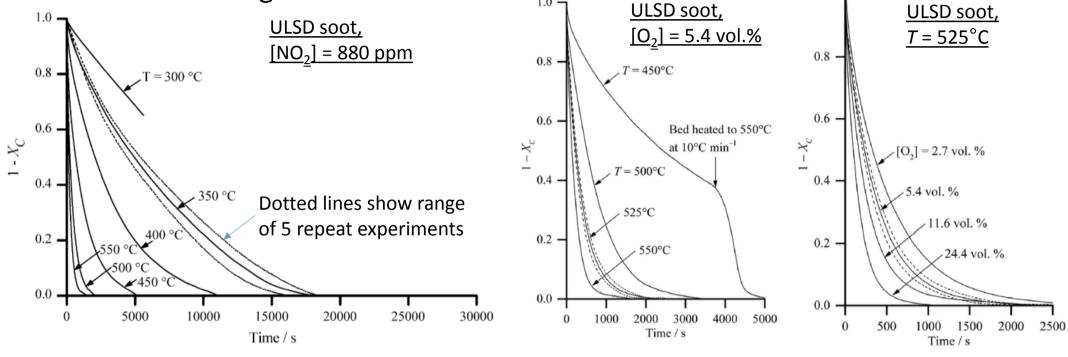
Products of Oxidation of the Soots


- There were two stages of burning in either NO₂ or O₂:
 - Initial, rapid transient reactions, which consumed ~ 20 % of the Diesel soots.
 - A second, slower stage of burning, which is the focus of subsequent analysis.
- The heat-treatment reduced the initial rate, but the second stage was unaffected.

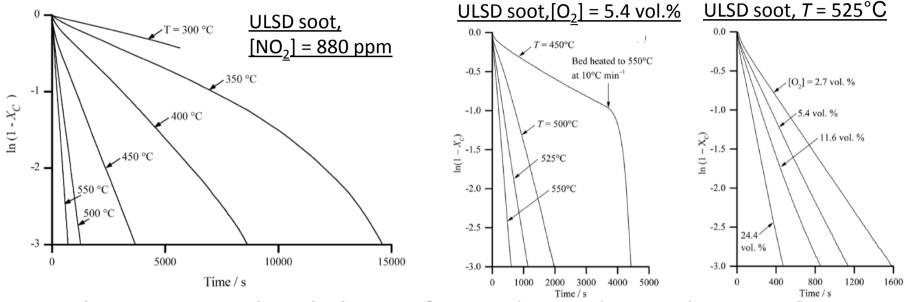
Overall Oxidation Reactions

- No water vapour detected during oxidation.
 - Hydrocarbons most probably pyrolysed to C and H₂ during heat-treatment.
- For oxidation by NO₂:
 - $C_{(s)} + NO_{2(g)} \rightarrow NO_{(g)} + CO_{(g)}$ and $C_{(s)} + 2NO_{2(g)} \rightarrow 2NO_{(g)} + CO_{2(g)}$.
 - Ratio [CO]/[CO₂] increased from 0.2 at 350 °C to 0.5 at 500 °C in 880 ppm NO₂.
- For oxidation of carbon by O₂:
 - $2C_{(s)} + O_2 \rightarrow 2CO_{(g)}$ and $C_{(s)} + O_2 \rightarrow CO_{2(g)}$.
 - Ratio [CO]/[CO₂] increased from 0.25 at 450 $^{\circ}$ C to 0.40 at 550 $^{\circ}$ C in 24.4 vol $^{\circ}$ O₂.
- Ratio [CO]/[CO₂] lower than a fundamental study [9] of oxidation of carbon:
 - Possible further reaction $2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$ in gas phase or surface-mediated.
 - However, [CO] + [CO₂] and therefore rate of oxidation of carbon unchanged.

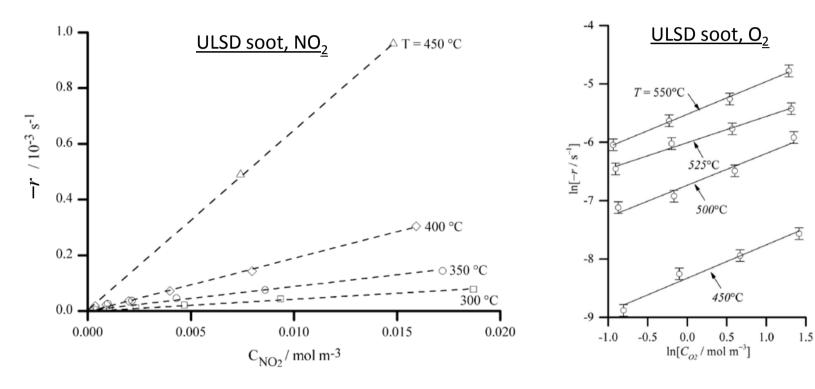
[9] L. Tognotti, J.P. Longwell, A.F. Sarofim, 1991. Products of the high temperature oxidation of a single char particle in an electrodynamic balance, Proc. Combust. Inst. 23, 1207–1213.


Plots of Decrease in Mass of Carbon with Time

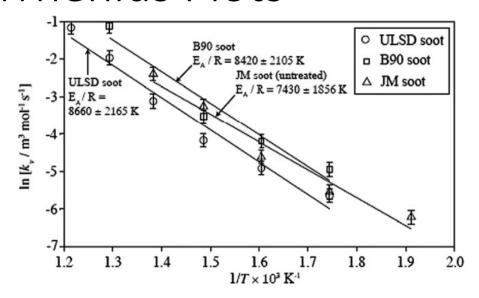
- Initial mass of carbon determined by:
 - (i) Known initial mass of soot multiplied by C fraction from elemental analysis.
 - (ii) Sum of all $\Delta m_{C,i}$ during heat-treatment and complete oxidation.
- These methods agreed to within ±5% for all the oxidation experiments.
- All of the carbon initially in the packed bed was oxidised to CO and CO₂:
 - Supports theory of pyrolysis of hydrocarbons during heat-treatment.
- Define conversion of carbon:

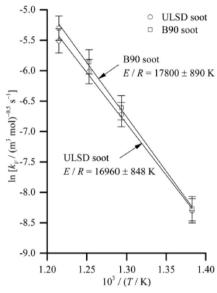

$$X_{C} = \frac{m_{C,0} - m_{C}}{m_{C,0}}$$

Plots of X_C against time


- These look like first order exponential decays, so plot $ln(1 X_C)$ against time.
- Gradient is the specific rate of oxidation of carbon $r = \frac{1}{m_C} \frac{dm_C}{dt} \log C s^{-1} \log C^{-1}$

Plots of $ln(1 - X_C)$ Against Time


- These plots were strikingly linear for oxidation by O₂, but not for NO₂
- Gradient of plots like the ones above were use to determine *r*:
 - For NO_2 , the gradients were taken from the linear parts of the curves up to $X_C = 0.65$.
- Define n^{th} order rate equation $-r = k_v C_A^n$, where A is NO_2 or O_2
 - The physical significance of k_V will be discussed later.


Orders of Reaction

- The oxidation of the carbon in both the ULSD and B90 soots was:
 - First order with respect to NO_2 ($n = 1.0 \pm 0.1$)
 - Half order with respect to O_2 ($n = 0.50 \pm 0.07$)

Arrhenius Plots

- The rate of oxidation by NO₂ of B90 soot was twice that of ULSD soot
- Surprisingly, there was no discernible difference in the rates of oxidation by O₂.
- Activation energies, *E*, were determined:
- When diffusion through pores controls overall rate:

$$E_{obs} \approx \frac{E_{true}}{2}$$
 and $n_{obs} \approx \frac{n_{true} + 1}{2}$

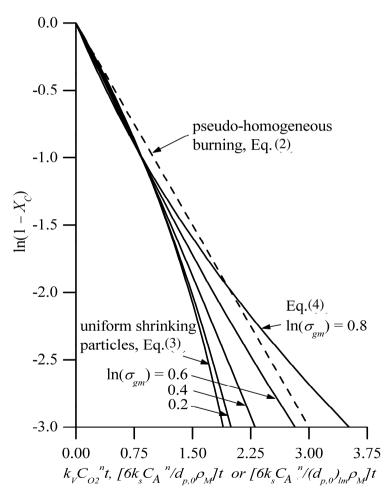
E / kJ mol ⁻¹	NO ₂	O ₂
ULSD soot	72 ± 18	141 ± 7
B90 Soot	70 ± 18	148 ± 7

Comparison of Physical Models of Burning Soot

Pseudo-homogeneous burning:

$$\ln(1 - X_C) = -k_v C_A^{\ \ n} t$$
 Eq. (2)

Shrinking particles, initially of uniform size:

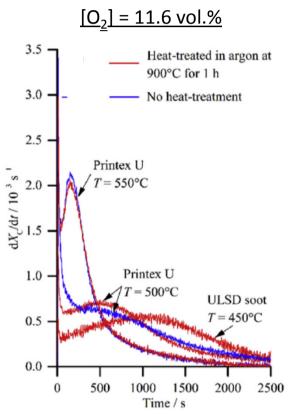

Rate constant for surface reaction
$$1 - (1 - X_C)^{1/3} = \frac{2k_s C_A^n}{d_{p,0} \rho_M} t$$
 Molar density of carbon Eq. (3)

• Shrinking particles, sizes initially distributed lognormally, with $p(d_{p,0})$ given by Eq. (1):

$$1 - X_C = \int_{d_{p,t}}^{\infty} \left(1 - \frac{2k_s C_A^{-n}}{d_{p,0} \rho_M} t \right)^3 p(d_{p,0}) \, \mathrm{d}d_{p,0}$$
 Eq. (4)

where
$$d_{p,t} = [2k_s C_A^n / \rho_M]t$$

• Mechanisms can be confused when $\ln(\sigma_{qm}) = 0.6$


Test for Pore Diffusion Control

- Direct evidence that spherules burn on the inside in O_2 , but on outside in NO_2 [10, 11].
- Could rate of oxidation be controlled by diffusion of NO₂ within porous spherules?
- Levenspiel [12] provides a criterion, which demonstrates negligible pore resistance:

Rate of oxidation per unit volume of solid
$$(-r''')_{obs} L^2$$
 Length scale $(-r''')_{obs} = \rho_M (-r) = \rho_M k_V C_{NO2}$ $\rho_M k_V C_{NO2}$ Effective diffusivity $\rho_e C_{NO2}$ $\rho_e C_{NO2}$ $\rho_e C_{NO2}$ Eq. (5)

- For ULSD soot at T = 550 °C and $[NO_2] = 880$ ppm $(C_{NO2} = 0.013 \text{ mol m}^{-3})$, $k_V = 0.35 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$. For an individual spherule, initial diameter 25 nm, $L = d_{p,0} / 6 = 25 \times 10^{-9} / 6 = 4 \times 10^{-9} \text{ m}$.
- D_{ρ} assumed to be equal to the molecular diffusivity of \tilde{NO}_{2} , $D = 8 \times 10^{-5} \, \text{m}^2 \, \text{s}^{-1}$
- Molar density $\rho_M = \rho_p / M_C = 1800 / 1.2 \times 10^{-2} = 1.5 \times 10^5 \, \text{mol m}^{-3}$ Left hand side of Eq. (5) is equal to 1.1×10^{-8} i.e. criterion for negligible pore resistance easily met.
- Therefore the rate of oxidation in NO₂ is <u>not</u> controlled by molecular diffusion in pores.
- [10] H. Seong, S. Choi, 2015. Oxidation-derived maturing process of soot, dependent on O_2 -N O_2 mixtures and temperatures, Carbon 93, 1068 1076.
- [11] A. Strzelec, R.L. Vander Wal, T.N. Thompson, T.J. Toops, C.S. Daw, 2016. NO₂ Oxidation Reactivity and Burning Mode of Diesel Particulates, Top. Catal. 59, 686 694. [12] O. Levenspiel, 1972, Chemical Reaction Engineering, John Wiley & Sons.

Pore Evolution in Printex U

- Initial, rapid reactions consumed ~ 6 % of heat-treated Printex U.
- Unlike the Diesel soots, the rate rose to a second maximum.
- Second maximum also observed with ULSD soot heat-treated at 900°C.
- Consistent with models of the evolution of pores in a burning particle:
- (i) Bhatia & Perlmutter [13], allowing for intersection of growing pores:

$$\frac{dX_{C}}{d\tau'} = \left[\left(1 - \frac{\tau'}{s} \right)^{3} \left(1 + \frac{\psi \tau'}{2} \right) + \frac{3}{s} \left(1 - \frac{\tau'}{s} \right) \right] \exp \left[-\tau' \left(1 + \frac{\psi \tau'}{4} \right) \right]$$

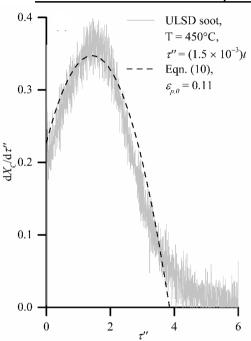
Initial porosity

- where $\tau' = [k_s C_{O2}^n / \rho_M (1 \varepsilon_{p,0})]t$ and $s = d_{p,0} S_{p,0} / 2(1 \varepsilon_{p,0})$ and Ψ is a parameter, which represents the initial structure of the pores.
- (ii) Petersen [14], with no allowance for the intersection of pores:


$$\frac{dX_{C}}{d\tau''} = \frac{\varepsilon_{p,0}}{1 - \varepsilon_{p,0}} \frac{2G(1 + \tau'') - 3(1 + \tau'')^{2}}{G - 1}$$

• where $\tau'' = [2k_sC_{O2}^n/d_{p,0}\rho_M]t$ and G is a root of $(4\mathcal{E}_{p,0}/27)G^3 - G + 1 = 0$

[13] S.K. Bhatia, D.D. Perlmutter, 1980. A random pore model for fluid-solid reactions 1. isothermal, kinetic control, AlChE J. 26 379–386. [14] E.E. Petersen, Reaction of porous solids, AlChE J. 3 (4) (1957) 443–448.


Fitting the Models of Pore Evolution

Printex U - Bhatia & Perlmutter [13]

- Two adjustable parameters: s and ψ .
- For pores, which are of initially uniform diameter, $\Psi = \ln(\mathcal{E}_{p,0}) = 9 \rightarrow \mathcal{E}_{p,0} = 0.1$.
- However, there is an inconsistency with s.

ULSD soot - Petersen [14]

- One adjustable parameter: $\mathcal{E}_{p,0}$ = 0.11.
- Bhatia & Permutter's model did not fit the second maximum for ULSD soot.

Conclusions

- Rates of oxidation of ULSD and B90 soots were measured in NO₂ or O₂.
- The rate of oxidation of B90 soot by NO₂ was twice that of ULSD soot.
- Surprisingly, in O₂ there was negligible difference in the reactivities of the soots.
- Similar orders of reaction and activation energies were determined for both soots:
 - First order with respect to NO_2 , $E \approx 70 \text{ kJ mol}^{-1}$.
 - Half order with respect to O_2 , $E \approx 140 \text{ kJ mol}^{-1}$.
- Plots of $ln(1 X_c)$ against t were compared to physical models of burning spherules:
 - Demonstrated pseudo-homogeneous burning of the two soots in O₂.
 - Suggested that the particles of soot burned mainly on their outsides in NO₂.
- The rates of oxidation of the soots by NO₂ were not controlled by pore diffusion.
- A second maximum in the rate of oxidation of Printex U by O₂ was consistent with a model of pores, growing and intersecting within the spherules.
- The insides of the spherules of the two Diesel soots and Printex U must have been accessible to O₂ as they burned.

Acknowledgements

- EPSRC and Johnson Matthey for funding a CASE award for Dr Tighe.
- Prof Nick Collings for permitting use of the Diesel engine.
- Dr Adam Weall for running the engine.
- Mr Alan Dickerson for elemental analysis.