

Effect of molecular structure of C1 – C7 hydrocarbons on PAH formation

Hamisu Adamu Dandajeh Nicos Ladommatos Paul Hellier

Department of Mechanical Engineering University College London

<u></u> <u> ■UCL</u>

Introduction: Poly-aromatic hydrocarbons (PAHs)

Ť	Sn	PAHs	PAH	Toxicity	Toxicity	PAH	Structure
			Abbreviation	Group	Factor	Rings	
ľ	1	Naphthalene	NPH	D	0.001	2	∞
	2	Acenaphthylene	ACY	D	0.001	3	8
	3	Acenaphthene	ACN	NA	0.001	3	8
	4	Fluorene	FLU	D	0.001	3	00
	5	Phenanthrene	PHN	D	0.001	3	6
	6	Anthracene	ATR	D	0.01	3	000
	7	Fluoranthene	FLT	D	0.001	4	∞8
	8	Pyrene	PYR	NA	0.001	4	

9	Benzo[a]anthracene	B[a]A	B2	0.1	4
10	Chrysene	CRY	B2	0.01	4
11	Benzo[b]Fluoranthene	B[b]F	B2	0.1	5
12	Benzo[k]Fluoranthene	B[k]F	B2	0.1	5
13	Benzo(a)pyrene	B[a]P	B2	1.0	5
14	Indeno[1,2,3-cd]pyrene	I[123cd]P	B2	0.1	6
15	Dibenzo[a,h]anthracene	D[ah]A	B2	1.0	5
16	Benzo[g,h,i]pelylene	B[ghi]P	D	0.01	6

Introduction: PAHs Vs Soot

Motivation

- ❖ Rise in human mortality rate → Stringent global particulate legislation
- Example of London Borough of Camden;
- ➤ Population = 165,000
- Number of annual deaths = 1126
- Particulate related deaths = 87
- Statistically, the 87 deaths caused a reduction of life average expectancy of 13.3yrs
- 1 in every 15 people will have their lifespan reduced by 13.3 years due to particulates

Control of particulates

Two fuel-based approaches to eliminating the toxicity of particulates:

- a) Eliminate the formation of carbon particles which act carriers of toxic substances such as PAHs
- b) Reduce the formation of toxic substances on the particulates such as PAHs

Methodology

Methodology

Generation of particulates and gas phase PAHs

Schematics of the experimental set-up: 1) mass flow controller (MFC) 2) vaporiser 3) static mixer 4) circulating cooling water 5) tube furnace 6) DMS 500 sampling probe 7) soot sampling probe

Results - effect of unsaturation on PAHs

Results – Weighted carcinogenicity of PAHs (WC- PAHs)

$$WC\text{-PAHs} = \sum_{i=1}^{16} (TEF_i * Ci)$$

TEF = Toxicity equivalent factors

C_i = PAH concentrations

WC-PAHs is higher at low temperature

Results – effect of carbon number on PAHs

□The total PAH concentrations tended to increase with increasing carbon number (excluding heptane) at the temperature of 1050 °C but an opposite (decreasing) trend was observed at 1350 °C.

Gas phase and particle phase PAH distributions - Summary

- From Naphthalene to pyrene, the amount of gas phase PAHs (ppm) decreases
- From Pyrene to Benzo (g,h,i)Perylene, the amount of particulate PAHs (ppm) increases
- Pyrene was considered as vital PAH in transition from gas to particle phase
- Mojority of PAH growth passes through pyrene

Formation of a two ring naphthalene PAH via HACA mechanism

Naphthalene was the most abundant PAH found during the pyrolysis of a triplebonded acetylene

Possible Phenyl/benzene routes from acetylene

HACA – Hydrogen Abstraction, Acetylene Addition

PAHs having 3 to 4 rings were detected in roughly similar concentrations regardless of the molecular structure of the hydrocarbon tested

Growth of a five-membered ring acenaphthylene to Pyrene

Growth of a benzenoid phenanthrene to benzenoid Pyrene

- Further information on PAH formation of some C1
 - C7 hydrocarbons can be found in:

Dandajeh, Hamisu Adamu, Nicos Ladommatos, Paul Hellier, and Aaron Eveleigh. 2017. "Effects of Unsaturation of C2 and C3 Hydrocarbons on the Formation of PAHs and on the Toxicity of Soot Particles." *Fuel* 194. Elsevier Ltd: 306–20. doi:10.1016/j.fuel.2017.01.015

Conclusions

- □ Increasing pyrolysis temperature of the tube reactor decreased the total PAH concentration regardless of the carbon number and degree of unsaturation of the hydrocarbons
- □ The concentration of gas phase PAHs generated from the C₂ and C₃ fuels increased with increasing unsaturation in the fuels tested
- □ The total PAH concentrations tended to increase with increasing carbon number of the hydrocarbons from C1 – C7 (excluding heptane) at the temperature of 1050 °C but an opposite (decreasing) trend was observed at 1350 °C.
- ☐ The weighted carcinogenicity of PAHs was found have the highest concentration for all the fuels at the lowest temperature tested and this concentration decreased with rise in temperature to 1350 °C.

Thank You