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The need to measure sub-micron nanoparticle mass 

• Many legislative metrics are expressed in terms of mass e.g. 

engine emissions in the U.S., ambient particle standards 

• Combined with size measurement, one can determine: 

- Particle density 

- Particle fractal index and dynamic shape factor  particle morphology 

• Particle “size” for a non spherical particle can be defined in many 

ways dependent upon measurement technique, but particle mass 

is well defined – measurement is independent of morphology 

and composition  

Mass ≡ 0.52 fg 

Size ~ 100 nm ??? 

? 
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Aerosol Particle Mass Analyser 

• Developed by Ehara et al. (1996) 

• Classifies particles by mass to charge ratio 

• Opposing centrifugal and electric fields classify particles 

 

Diagram courtesy of J. Olfert 
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Centrifugal Particle Mass Analyser 

• Concept by Mark Rushton and Kingsley Reavell (Cambustion) – also known as “Couette CPMA” 

• Developed as a PhD project by Jason Olfert at Cambridge University (2003–2006) 

• Cylinders rotate at slightly different speeds  Creates a velocity gradient (Couette flow)  Vary 

centrifugal force across radius  Forces balance across radius 

• Particles of correct mass pass through at all entry locations 

 

 

See: Olfert & Collings (2005). J. Aero. Sci. 

ωi > ωo ωi = ωo 
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New Version (2012…) 

200 l × 120 ø mm classifier with 1 mm gap; 0.1–1000 V; 500–12,000 rpm 

Set mass and resolution (FWHM) directly, rather than speed and voltage…. 
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Mass setpoint and resolution 

• CPMA selected centre mass is a simple function of the physical 

parameters of the CPMA, by balancing the forces: 

 

 

 

 

• Unlike say a DMA, setpoint has no dependence on gas properties (e.g. 

temperature, pressure, viscosity, mean free path) or slip correction. 

• Infinite choice of ω, V which balance for a given mass:charge — 

magnitude determines particle drift speed and hence resolution. We 

use a simplified drift based model: 
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Resolution & Scanning 

A (good) approximation shows (Reavell et al. 2011): 

This is dependent upon mobility, B, hence dp,mobility 

To calculate ω and V for a desired resolution, software needs mass:size model: mp 

= A dp
i (for unit density spherical particles, A = (π / 6) × 1000 and i = 3). Mass setpoint accuracy still 

independent of all these factors, only needed for accurate resolution. 

The size based resolution, Rs = ~ 3 Rm for spheres 

For typical DMA resolution of Rs ~ 10, the equivalent CPMA resolution, Rm ~ 3.03 

As the net drift velocity = EqB - mω2rB, strictly speaking, scanning the voltage 

whilst leaving the speed constant changes the resolution over the scan – the new 

CPMA allows simultaneous counter variation of ω and V to keep the resolution, R, 

constant. 
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DMA-CPMA System 

e.g. Thermo 102 nm PSL d/Δd = 8.33, DMA d/Δd = 

20.0, CPMA d/Δd = 31.0 (m/Δm = 10.0) 
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• PSL particles are nebulised, neutralised 

(charged) and passed through DMA 

• CPMA step scanned – speed and 

voltage counter-varied to maintain same 

resolution. 

• In the following examples, the CPMA’s 

resolution is finer than the DMA’s, 

therefore only a narrow “slice” is 

measured, so NCPC2 < NCPC1. 

Diagram courtesy of J. Olfert 
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PSL Results 

150 nm PSL: CPMA Rm = 5.12 (Rd ~ 16.6), flow = 1.5 lpm; DMA sheath = 10 lpm, aerosol = 1 lpm 

CPMA Size Plot (density = 1.05 g/cc)
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Error = 1.8%

Similar width of distribution validates drift limited resolution model. 

Though “traceable”, PSL is not ideal for this experiment: 

 

• Tolerance of 50 nm PSL is 7.3 nm = 15% in size; but ~45% in mass terms (~90% as a 

95% C.I.) – as a mass “standard” almost meaningless 

• Size alignment of PSL and DMA is critical 

• Nebulised PSL actually bimodal: “Surfactant peak” can overlap PSL peak – density? 

 

 



NaCl Experiments 

• Cut nebulised NaCl aerosol with DMA, pass through CPMA 
 

- Calibrated DMA more accurate than PSL (esp. for Dp <100 nm) 

- No surfactant (no mixture of different densities) 

- Only 2 functions to convolute 

- Nebulised aerosol not monodisperse, doubly charged particles occur 

- Particles are not spherical (~cubic), must take account of shape factor (for DMA accuracy) 
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Much more on charge later… 
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NaCl Experiments: Uncertainties 

•
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Quantity Abs Tolerance (eqv. to 95% C.I.) Δx/x 95% C.I. 

Voltage (V) - 1% 

Angular Speed (ω) - 1% 

Inner Radius (ri) ± 0.05 mm - 

Outer Radius (ro)  ± 0.05 mm - 



NaCl results: Rm = 3 (Rs ~ 10) 
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Penetration
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NaCl results: Rm = 5 (Rs ~ 16) 
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Penetration
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Density Measurement: Diesel Engine 

50 nm Diesel soot
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Density Measurement: Diesel Soot Generator 

Effective density
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Tandem CPMA:DMS …when speed is of the essence 

• Mp vs. Dmo obtained in < 5 minutes; just 1 CPMA scan 

• Charge aerosol with neutraliser, scan CPMA, sample 

with modified DMS500: 

- DMS Charger disabled 

- Inversion matrix created assuming +1 pre-charged 

aerosol (10 nm – 150 nm, 64 classes per decade) 

- 1.5 lpm sample flow 

- Mass setpoint from CPMA logged to DMS   

- Lognormal CMD from DMS logged to CPMA 

- DMS Validated with monodisperse aerosol from DMA: 

 

 

 

 

 

 

 

 

• Technique recently used on Gas Turbine engines… 
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Charge Effects – Downstream of DMA 

• Strictly necessary to correct for multiple charges from Neutraliser - DMA system. 

• e.g.: 100 nm particle 

- +2 particle from DMA (with same electrical mobility) at 152 nm (mass 1.8 fg at 
unit density) 

- These particles (still with 2+ charges) appear at half the mass of a 152 nm 
particle in the CPMA scan (2 charges): 0.9 fg 

- observed +2 peak equivalent to 120 nm: 
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Charge Effects – Bipolar Equilibrium Charge 

• Charging models size based, hence a mass based model is weakly density dependent  

• Inverse problem yet to be tackled 

• If an electrometer is used when scanning — don’t detect zero charge particles 

- Still need to correct concentration for their absence, and for the absence of –ve charged particles 

 

100 nm PSL re-neutralised after DMA, R m = 2.3 
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Higher resolution, bigger particles, more charges… 

300 nm PSL, Rm = 5.13
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Liquefied Petroleum Gas Vehicle (preliminary data) 
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CPMA-Electrometer: A Suspended Mass Standard 

• System appealing as “suspended mass standard” for instrument calibration 

-  electrometer counts “double mass:charge” particles twice (etc), correcting for charge 

 

CPMA Source Charger 
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mtotal
  = mass setpoint × indicated electrometer concentration + zero charge correction 

Not true for DMA-Electrometer system – doubling ‘drag’ does not double concentration! 
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Applications & Specifications 

• Fundamental aerosol mass standard – calibrate AMS, black carbon detectors etc. 

• Particle density / morphology (with DMA & CPC) 

• Mass scan (with CPC or electrometer) 

 

 

 

 

 

 

 

 

 

 

 

• Classifier dimensions: 200 l × 120 ø mm, 1 mm gap 

• Typical sample flow, 0.3 – 1.5 lpm 

• Residence time ~ 3 s @ 1.5 lpm 

• Operating parameters: 500 – 12,000 rpm, 0.1 – 1000 V 

• I/O: Ethernet, RS232 / USB, 3 × analogue in, 3 × analogue out 

• Integrated touchscreen controller, with step scan to USB drive  
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0.001

0.01

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1 1 10 100 1000

Mp (fg)

R
m

1.5 lpm 

flow

0.3 lpm 

flow

CPMA Size & Resolution Limits at 1 g/cc

0.1

1

10

100

1000

1 10 100 1000 10000

Dp (nm) at 1 g/cc

R
s

1.5 lpm 

flow

0.3 lpm 

flow



24 

Acknowledgements 

• Dr Jason Olfert (University of Alberta) 

• Professor Nick Collings (University of Cambridge) 

• Andrew Todd (Cambustion) 



 

Jon Symonds: jps@cambustion.com 

 

www.cambustion.com/cpma 
for more information including references 

 

 

mailto:jps@cambustion.com
http://www.cambustion.com/cpma

