Fast Particle Size Distribution Measurements with SMPS utilizing a Novel Classifier

Mark Crooks (2); TSI Instruments Ltd.

T. Tritscher* (1), M. Beeston (2) J. Farnsworth (3), E. Filimundi (4), S. Elzey (3), H.-G. Horn (1), and O.F. Bischof (1)

- (1) TSI GmbH, 52068 Aachen, Germany *
- (2) TSI Ltd, High Wycombe, UK
- (3) TSI Incorporated, 55126 Shoreview, MN, USA
- (4) TSI France, 13382 Marseille Cedex 13, France

Presented at Cambridge Particle Meeting. 27th June 2014

Content

+ Model 3082 classifier

- Ease of use
- Performance,
 - Sheath flow
 - Voltage
 - Size and concentration testing ISO 15900
- Scan time
 - Fast Scanning
 - Considerations and Trade offs
- Summary

BACKGROUND & MOTIVATION

- + Differential mobility (DMPS Fissan *et al* 1983; SEMS, Wang & Flagan 1990) is the measurement principle of choice for making size distribution measurements
- + TSI 3071 Electrostatic Classifier introduced in 1972
- + TSI 3080 Electrostatic Classifier in wide use since introduction in 1999

- · Desire for portability and ease of use
- Desire for operation without PC for field use
- 3080 Classifier limited to 30 sec scans; take advantage of fast response of today's CPCs
- + 3080 performance is well-proven. Refreshed device should do no harm. Must be as good or better.

TSI Model 3071

TSI Model 3080

TSI MODEL 3082 ELECTROSTATIC CLASSIFIER

Ease-of-Use Improvements

 Auto-recognition of SMPS hardware

- o DMA
- o CPC
- Neutralizer
- Impactor

Touchscreen display

25% weight and width reduction compared to TSI Model 3080

Inlet and impactor kit

Integrated, removable bi-polar x-ray neutralizer

Now supports standalone scanning (no PC) in addition to software

Data download via USB Flash

DMA quickconnect mount

Tool-free installation of DMAs and impactor set

TSI MODEL 3082 ELECTROSTATIC CLASSIFIER

Performance Improvements

- 2-30 L/min sheath flow
- 50 Hz data sampling for higher time resolution
- Optional Dual polarity high voltage control for DMA with 50 ms response time for fast scanning
- Well-characterized CPC response time
- Single blower, removed bypass flow connections
- No change to DMAs

TSI MODEL 3082 ELECTROSTATIC CLASSIFIER

Extensive Verification Testing

Development: 18 months, 15 engineers, 5 prototype cycles, 17 total prototypes, 150+ development tests, 55 validation tests

Subsystem verification – test BEYOND product specifications

- Sheath flow
- High voltage
- Dual polarity
- Response time
- Algorithms
- Communication
- Mechanical interfaces
- Accelerated life testing

System validation – test to product specifications

- Size accuracy
- Concentration accuracy
- Size resolution
- Fast scanning
- Reliability/repeatability
- Shipping/vibration

3082 SHEATH FLOW ACCURACY

Target Accuracy: ±2% over 10-40 ℃ range

3082 HIGH VOLTAGE ACCURACY

PARTICLE TEST SETUP

- Flexible setup for majority of tests
 - Different materials (NaCl, PSL)
 - Number concentration accuracy
 - Size accuracy
 - o Polarity comparisons
 - o 3080 Comparisons

3082 100nm SIZE ACCURACY

Methods per ISO 15900 Sections 7.7, 7.8

Test (n=5)	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Mean Diameter (nm)	101.0 ±0.2	100.0 ±0.2	99.8 ±0.9	99.5 ±0.8	100.0 ±0.2	100.4 ±0.8
Size Resolution	1.0%	1.0%	1.1%	1.1%	1.0%	1.1%

Configuration:

3776 CPC high flow, 3081A DMA, 60s scan time, 10:1 sheath to aerosol flow ratio, avg. of 5 scans

3082 CONCENTRATION ACCURACY

Methods per ISO 15900 Section 7.9

Test conducted in instrument calibration

- Monodisperse 100nm PSL at >1000 #/cc
- o 60s scan time x 5 samples
- o CPC concentration recorded before/after SMPS scan, averaged

Experimental Setup

Test Results

3082 SCAN TIME COMPARISON

100nm PSL, using scan times 5-120s

Configuration

- 3081A DMA
- 10:1 sheath to aerosol flow ratio
- 1.5 I/min CPC flow rate
- 25.4 cm tube length
- avg. of 3 scans

FAST SCANNING

Considerations and Tradeoffs

- + Fast scanning ideal for polydisperse distributions at high concentrations, non-ideal for monodisperse aerosols
- + Trade-off between resolution and scan time due to basic physical principles (see figure)
- + For best results...
 - Use CPCs with fast response time (3776, 3788) for best resolution
 - Use short tube length (<25cm) to reduce broadening
 - Time delay can be adjusted for your specific setup to improve accuracy

From Erickson *et al.* (2012) Investigation of Fast Scanning SMPS Measurements: 16s and Below. Presented at EAC 2012, WG08S3O5

SUMMARY

- + Fast scanning sizer and classifier has been developed
 - Enhanced usability (auto-recognition and tool-free install of hardware, size/weight reduction, touch screen display)
 - Enhanced performance (dual polarity, fast-scanning for measuring moderate transients, higher resolution from increased sheath flow)
- + Calibration methods comply with international standards
 - ISO 15900:2009 for size accuracy, resolution, etc
 - ACTRIS/EUSAAR for data reporting
- + Performance has been verified against 3080 Classifier
 - Extensive verification and validation testing to ensure reliability over time, temperature, RH, vibration
 - Fast scanning advantages/trade-offs investigated