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Motivation 

• Aircraft gas turbine engines emit PM 

– Focus on non-volatile black carbon (BC) mass 

• Climate impacts (direct and in-direct) and health 

impacts 

• Limited measurement data  

• Engine lifetimes of ~decades, new regulations (SAE 

E-31) unlikely to be applied to engines currently in 

service 
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Contrail cirrus 
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Contrail cirrus 
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Aircraft Smoke Number 

• Regulation introduced in 1981 to reduce plume 

visibility 
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Boeing 707, circa 1960 



Aircraft Smoke Number 

• No engines since 1990 have exceeded regulatory 

limit 
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Boeing 787, circa 2011 



SN measurement 
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SN measurement 
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SN to BC mass concentration 

• Several studies have correlated SN to BC mass 

concentration (CBC) 
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SN to estimate aircraft BC emissions 

15 

• First Order Approximation v3 method (FOA3) 

• Developed in International Civil Aviation 

Organization CAEP meetings 

• Estimate BC emissions during landing and take-off 

ICAO, 2011. Airport Air Quality Guidance Manual. 

Wayson, R. et al. (2009). J Air & Waste Management Association, 59(1), 91–100. 



Validation of existing SN-CBC correlation 

16 

•Measurement data of SN and 

EI(BC) 

•APEX 1-3 

• SAMPLE III 

• FOA3: 

•Consistent underestimation 

•APEX 1-3 underestimated 

by ×5 on average 

• Scatter in data 

•Correlation between SN and 

CBC? 

i. Effect of particle size 

distribution 

ii. SN measurement 

variability 

 

 

 

 



(i) Particle size distribution 

• Empirical correlation between SN-CBC derived for soot with 

GMD = 80-100 nm (Girling et al., 1990) 

• Inconsistent with aircraft measurements (GMD = 20-40 nm) 
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Champagne, D.L., 1971. ASME paper 71-GT-88. 

Girling, S.P., Hurley, C.D., Mitchell, J.P., Nichols, A.L., 1990. Aerosol Science and Technology 13, 8–19. 

Wayson, R., Fleming, G., Iovinelli, R., 2009. Journal of the Air & Waste Management Association 59, 91–100. 

Whyte, R.B., 1982. Alternative Jet Fuels. AGARD Advisory Report No. 181, Vol. 2. 

Source: Girling, S. P., et al. (1990). 



(ii) SN measurement variability 
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(ii) Filter diameter variability 
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Experimental set-up 
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Experimental set-up 
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Particle size distributions 
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GMD 

(nm) 

GSD 

60.4 1.79 

30.5 1.65 

20.0 1.62 



Morphology 
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• BC aggregates: 

•Open structure 

• Spherical 

• Primary particle size <20 nm  



Morphology 
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𝑚𝑝[fg] = 𝐶𝑚 𝑑𝑚
𝐷𝑚   

• Particle mass as a function of 

mobility diameter 

•Dm is the mass-mobility 

exponent (Dm =3 for spheres) 

•Dm ~ 2.3 

 

Sorensen, C.M., 2011. Aerosol Science and Technology 45, 765–779. 



BC mass concentration 
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𝐶BC,𝜌eff =  𝑛 𝑑𝑚 𝑚𝑝 𝑑𝑚  d𝑑𝑚

∞

0

 

• Estimate mass concentration  

• particle number distribution: n(dm) 

• particle mass: mp(dm)  

•±10% error when compared to gravimetric 

analysis 

 

𝑛 𝑑𝑚  

𝑚𝑝 𝑑𝑚  
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SN-CBC 
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•Correlation between SN and CBC  

• Impacts of: 

• Filter diameter 

• 19 mm (open) 

• 35 mm (filled) 

• Particle size distribution  
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•Correlation between SN and CBC  

• Impacts of: 

• Filter diameter 

• 19 mm (open) 

• 35 mm (filled) 

• Particle size distribution  

•GMD = 60 nm  

•Matches FOA3 correlation 

• FD not significant 

•GMD = 30 nm  

•Greater CBC for a given SN 

• Less mass collected for 19 

mm FD 

 

 



SN-CBC 
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•Correlation between SN and CBC  

• Impacts of: 

• Filter diameter 

• 19 mm (open) 

• 35 mm (filled) 

• Particle size distribution  

•GMD = 60 nm  

•Matches FOA3 correlation 

• FD not significant 

•GMD = 30 nm  

•Greater CBC for a given SN 

• Less mass collected for 19 

mm FD 

•GMD = 20 nm  

• Similar to 30 nm 

• FD not significant 

 

 



SN-CBC 
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•Combine data for 20 and 30 nm 

GMD to represent aircraft BC 
 

𝐶BC  
mg

m3
= 0.236 SN 1.126  

 

•±25% uncertainty bound 

captures >95% of the data 

• Predicted CBC factor 3 greater 

and FOA3 

• Suggests that the current 

correlation underestimates 

aircraft BC emissions 



Filtration efficiency 
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Validation of new SN-CBC correlation 
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•Measurement of SN and EI(BC) 

•APEX 1-3 

• SAMPLE III 

• FOA3: 

•Consistent underestimation 

•APEX 1-3 underestimated 

by ×5 on average 

 

 

 



Validation of new SN-CBC correlation 
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•Measurements of SN and EI(BC) 

•APEX 1-3 

• SAMPLE III 

• FOA3: 

•Consistent underestimation 

•APEX 1-3 underestimated 

by ×5 on average 

•New SN-CBC 

• Improved estimates 

•APEX 1-3 

R2=0.10 → 0.79 

• SAMPLE III 

R2=0.56 → 0.74 
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Validate estimated EI(BC) 

• Measurements of aircraft EI(BC) from: 

– APEX 1-3 (Timko et al, 2010) 

– Delta-ATL (Lobo et al., 2008) 

– Agrawal et al. (2008) 

– SAMPLE III (Crayford et al., 2012) 

 

• Data for 13 engine models 

 

• Use certification SN to estimate EI(BC) 

41 

Agrawal, H. et al., 2008. Atmospheric Environment 42, 4380–4392. 

Crayford, A. et al., 2012. Studying, sAmpling and Measuring of aircraft Particulate Emissions III - SAMPLE III. 

Lobo, P. et al., 2008. Delta - Atlanta Hartsfield (UNA-UNA) Study. 

Timko, M.T. et al., 2010. Journal of Engineering for Gas Turbines and Power 132, 061505. 

 



Validate estimated EI(BC) 
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•Current ICAO estimates are 

low 

•Greater than ×10 in 

40% of cases 

•R2 = -0.10 

•Consistent 

underestimation 

•Zero SN, non-zero 

EI(BC) 
 
 

 

 

 



Validate estimated EI(BC) 
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•Current ICAO estimates are 

low 

•New SN-CBC improves but 

still inaccurate 

•R2 = 0.35 

•Remaining questions on 

reliability of certification SN 

•Engine degradation (?) 

•Sample line loss 
 

 
 

 

 



Remaining uncertainties 
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Estimating EI(BC) without SN - FOX 

• Based on Arrhenius model for soot formation and 

oxidation 

• Empirical – use measurements to calibrate 

• More accurate estimates of EI(BC) at ground and 

cruise altitude 

45 

𝐶BC
mg

m3
≈ 𝑚𝑓  𝐴𝑓𝑜𝑟𝑚 𝑒

−
6390
𝑇𝑓𝑙 − AFR 𝐴𝑜𝑥 𝑒

−
19778
𝑇𝑓𝑙  

Formation Oxidation 



Estimating EI(BC) without SN 
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•FOA3: R2 = 0=-0.10 

 

•New SN-CBC: R2 = 0.34 

 

•FOX method: R2 = 0.68 

 
 

 

 



• FOX estimates agree within measurement error 

• SULFUR 1-7 measurements 

– Cited as typical emissions values 

– Conducted at low airspeed 

– Low aircraft weight 

→ Low engine thrust setting (~20%) 

 

 

EI(BC) at cruise 

47 
Schumann, U. et al. (2002) JGR 107 (D15). doi:10.1029/2001JD000813 

. 

SULFUR 1-7  

(Schumann et al., 2002) 



EI(BC) depends on engine thrust setting 

48 

• Ground level measurements indicate that EI(BC) 

increases with engine thrust setting 



Global aircraft BC emissions 
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• ~2.5 higher than current best estimate used in 

climate impact evaluation 

• Updated aviation direct BC RF is ~1/3 that of CO2 

(linear scaling) 

Lee, D. S. et al. (2010) Atmospheric Environment, 44(37), 4678–4734. 



Summary 

• SN reduced plume visibility 

• Experiments to test SN-CBC correlation 

– Controllable BC generation 

– Existing correlation underestimates by ×2.5 for ‘aircraft-

sized’ BC particles 

• Remaining SN uncertainty  

– Line losses 

– Probe design 

– Engine degradation 
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Summary 

• Empirical BC emissions model independent of SN 

developed 

• Updated estimate of global aircraft BC emissions  

– ~2.5 higher than previous estimates 

– Direct BC RF is ~1/3 that of CO2 

– Greater importance of measures to reduce BC emissions 

– Need more measurements at cruise 

 

 

 

 

51 



Acknowledgements 

• Funding from EPSRC 

• Cambustion Ltd. for loan of CPMA 

• Cardiff University for loan of filter holders 

• APEX 1-3 data: Aerodyne, MS&T 

• SAMPLE III data: Cardiff University, Rolls Royce plc. 

52 



Thank you, questions? 
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Effective density 
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𝜌eff =
𝑚𝑝

𝜋
6
𝑑𝑚
3
  

•Mass divided by volume of 

sphere with equal mobility 

diameter 

•Material density ~1,800 kg/m3 



Filtration efficiency 
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• Filtration efficiency is strongly 

dependent on particle mobility 

diameter 

• Significant difference for 

different filter diameters (FD) 

• For FD = 19 mm 

•Minimum filtration  

• 40% 

•<30nm 

• For FD = 35 mm 

•Minimum filtration  

• 40% 

• 40-60 nm 

 



Filtration efficiency 
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• Filtration efficiency is strongly 

dependent on particle mobility 

diameter 

• Significant difference for 

different filter diameters (FD) 

• For FD = 19 mm 

•Minimum filtration  

• 40% 

•<30nm 

• For FD = 35 mm 

•Minimum filtration  

• 40% 

• 40-60 nm 

•Mass distributions indicate less 

mass collected for smaller GMD 

 



Filtration efficiency 
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Global aircraft BC emissions 
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Global aircraft BC emissions 

59 Döpelheuer, A., & Lecht, M. (1998). RTO AVT Symposium on Gas Turbine Engine Combustion Emissions and 
Alternative Fuels (p. RTO MP–14). Lisbon, Portugal.  



Outcomes – Airport air quality 

60 

Heathrow Airport 



• SULFUR 1-7 measurements 

 

Validation of cruise EI(BC) estimates 

61 
Schumann, U. et al. (2002) JGR 107 (D15). doi:10.1029/2001JD000813 

. 

Aircraft A310-300 B737-300 A340 

Engine CF6-80C2A2 CFM56-3B1 CFM56-5C4 

𝑚 𝑓/𝑚 𝑓,𝑚𝑎𝑥 (%) 18.6 22.5 20.0 

Measured EI(BC) 

(g/kg-fuel) 

0.019 ± 0.01 0.011 ± 0.005 0.010 ± 0.003 

Estimated EI(BC) FOX  

(g/kg-fuel) 

0.017 0.015 0.011 

Schumann et al. (2002) 



Engine thrust setting at cruise 
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• Real flight data from Flight Data Recorder 

 



EI(BC) depends on engine thrust setting 
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Motivation 

• Aircraft gas turbine engines emit PM 

– Non-volatile black carbon (BC) 

– Semi-volatile organic material and sulphates 

• Degrade of air quality and contribute to radiative forcing 

• Current SN regulation concerned with plume visibility 

• Limited data on aircraft BC mass emissions 

• Engines lifetimes of ~decades and new non-volatile particle 

number, size and mass (SAE E-31) standards unlikely to be 

applied to engines currently in service 
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SN to BC mass concentration 

• Correlation is inconsistent with measured aircraft 

PSDs (GMD = 20-40 nm) 

65 

Source: Kinsey, J. S. et al., 2010. Atmospheric Environment, 44(17), 2147-

2156. 

APEX 1-3 
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SN to BC mass concentration 

• Correlation is inconsistent with measured aircraft 

PSDs (GMD = 20-40 nm) 
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SAMPLE III 
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SN changes over time 
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SN to BC emissions index – FOA3 

• Estimate BC emissions index (mass per unit of fuel 

burned) from the SN 
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EI BC = 𝐶BC SN × 𝑄 



SN to BC emissions index – FOA3 

• Estimate BC emissions index (mass per unit of fuel 

burned) from the SN 
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EI BC = 𝐶BC SN × 𝑄 

SN 

 

• Regulatory 

measurement 

• Standard  

procedure (ARP 

1179C) 

 



SN to BC emissions index – FOA3 

• Estimate BC emissions index (mass per unit of fuel 

burned) from the SN 
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EI BC = 𝐶BC SN × 𝑄 

CBC 

 

• mg/m3 

• Empirical 

correlation 

between SN and 

CBC 

SN 

 

• Regulatory 

measurement 

• Standard  

procedure (ARP 

1179C) 

 



SN to BC emissions index – FOA3 

• Estimate BC emissions index (mass per unit of fuel 

burned) from the SN 
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EI BC = 𝐶BC SN × 𝑄 

CBC 

 

• mg/m3 

• Empirical 

correlation 

between SN and 

CBC 

Q 

 

• m3/kg-fuel 

• Volumetric 

exhaust flow rate 

 

SN 

 

• Regulatory 

measurement 

• Standard  

procedure (ARP 

1179C) 

 



SN to BC emissions index 

• BC emissions index: mass per unit of fuel burned 
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EI BC = 𝐶BC SN × 𝑄 

CBC 

 

•mg/m3 

• Empirical correlation between SN and 

CBC 

• Sources of error: 

i. SN measurement variability 

ii. Particle size distribution 

Q 

 

•m3/kg-fuel 

• Volumetric 

exhaust flow 

rate 

•±30% 

uncertainty 

 

EI(BC) 

 

•mg/kg-fuel 

• Standard metric  



Gravimetric analysis 
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Burner  

Setting 

Collected  

mass (mg) 

CBC,grav  

(μg/m3) 

CBC,ρeff 

(μg/m3) 

CBC,grav/CBC,ρeff 

GMD=60nm 0.41-0.43 161-167 174-184 0.90-0.93 

(±0.02) (±8) (±15) 

GMD=20nm 0.31-0.66 123-128 125-140 0.91-0.98 

(±0.02) (±8) (±16) 



(ii) SN measurement variability 
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(ii) SN measurement variability 
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SN to estimate aircraft BC emissions 
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• First Order Approximation v3 method (FOA3) 

• Developed in International Civil Aviation 

Organization CAEP meetings 

• Estimate BC emissions during landing and take-off 

ICAO, 2011. Airport Air Quality Guidance Manual. 

Wayson, R. et al. (2009). J Air & Waste Management Association, 59(1), 91–100. 

Yim, S.H.L. et al. (2013). Atmospheric Environment 67, 184–192. 

 

Heathrow Airport 

 


