

Study of Fuel Oxygenate Effects on Particulates from Gasoline Direct Injection Cars

Heather Hamje Rod Williams Corrado Fittavolini

Cambridge Particle Meeting
June 27, 2014

Background

- It is well known that gasoline direct injection (GDI) vehicles produce more particulate matter than port fuel injected equivalents
- From 2014 limits on particulate number will be introduced for Euro 6 GDI vehicles which by 2017 will be equivalent to those that exist for diesel vehicles
- In addition, the Renewable Energy Directive and Fuels Quality Directive from 2009 are likely to require increased use of oxygenates
- Previous work has found the response of particulate to oxygenates to be drive-cycle dependent
 - Most studies conducted on US test cycles
 - Studies on either matched or splash-blended fuels
 - Oxygen content, distillation and fuel composition thought to be important
- Two passenger cars were tested over the NEDC test cycle for regulated emissions, PM, PN and fuel consumption
 - Scoping study using reference fuel
 - ▶ Fuel Matrix covering range of RON, oxygenate types and O₂ content

Test Vehicles

Vehicle No.	1	2
Vehicle Class	Upper Medium	Medium
Manufacturer		
Model		
Category	M1	M1
Emission Standard (homologation)	Euro 4	Euro 5
Engine Displacement (litres)	2.5	1.8
Max. Power (kW)	140	118
Inertia Class (kg)	1590	1470
Cylinder	6	4
Valves	24	16
Aspiration	Natural	Turbo
Combustion Type	Homogeneous stoichiometric	Homogeneous stoichiometric
Injection System	DI	DI
After-treatment device	TWC	TWC
Drive	RWD	FWD
Transmission	Manual 6-speed	Manual 6-speed
E10 Compatible?	Yes	Yes
Registration Date	15/06/2007	4/6/2009
Mileage at start of test (miles)	23,354	8,890

CVS System

Particulate Number System

Particulate number and distribution measured using the PMP protocol and ELPI system

Reproduction permitted with due acknowledgement

Heather Hamje

Flush and Preparation Procedure

- Conduct fuel tank drain
- Fill with 15 litres of test fuel
- Set type pressure
- Conduct 2 NEDC cycles on the chassis dynamometer
- Conduct fuel tank drain
- Fill with 15 litres of test fuel
- Full exhaust leak check
- ▶ Tyre pressure check
- ▶ Preconditioning cycle ECE + 2 x EUDC
- Overnight soak
- ▶ Run NEDC test (ECE + EUDC)

Carry out 2x

Main Study Fuels and Testing Sequence

	Vehicle 1	Vehicle 2
Test 1	Reference	Reference
Test 2	Fuel A	Fuel F
Test 3	Fuel D	Fuel B
Test 4	Fuel C	Fuel E
Test 5	Reference	Reference
Test 6	Fuel E	Fuel G
Test 7	Fuel F	Fuel A
Test 8	Fuel B	Fuel C
Test 9	Fuel G	Fuel D
Test 10	Reference	Reference
Test 11	Fuel D	Fuel C
Test 12	Fuel F	Fuel A
Test 13	Fuel B	Fuel G
Test 14	Fuel C	Fuel F
Test 15	Reference	Reference
Test 16	Fuel A	Fuel D
Test 17	Fuel G	Fuel E
Test 18	Fuel E	Fuel B
Test 19	Reference	Reference

In addition to the fuel matrix the reference fuel used in the scoping study was also run and repeated at intervals

Octane Effects with Zero Oxygenate

Directionally higher PM and PN with higher RON although effects are small and not statistically significant

Ethanol Effects on PN and PM at matched RON

Veh 1: EtOH effect on PN (matched RON) 1.2E+12 1E+12 8E+11 PN, #/km 6E+11 4E+11 2E+11 Е 95 95 E0 E10

No significant effects - directional increase in PM and PN with increased ethanol, at 98 RON directional reduction is observed with due acknowledgement

Reproduction permitted

Oxygenate Type Effects at Same Oxygen Content

▶ Although some statistically significant differences between fuels, no consistent effects were observed. Both oxygenates tend to reduce PN. Reproduction permitted with due acknowledgement

E10

Results of Splash Blending Ethanol

Reproduction permitted

Vehicle 1: EtOH effect on PN 1.2E+12 1E+12 8E+11 6E+11 4E+11 2E+11 C Α 95 98.4 101.2 E0 E10 E20

Splash blending gave directional reduction in PN as ethanol content increases but no significant effect on PM with due acknowledgement

Particle Number Distribution

- Vehicle 2 has higher PN than Vehicle 1 for all fuels
- Bi-modal distribution was observed although limitations on the detection limit of the equipment for nano-particulate detection
- ▶ Error bars (not shown) too great to distinguish trends between fuels

Effect of Volatility on FC, PM and PN

Fuel Consumption vs Oxygen Content & Calorific Value

Correlations between fuel consumption and oxygen content and calorific value were consistent with expectations

Effects on Other Regulated Emissions

- Again fuel effects were small, although vehicle 2 seemed slightly more sensitive than vehicle 1, trends were observed as follows:
- With no oxygenates present significant increase in NOx with increase in octane was observed in vehicle 2
 - ▶ No change in vehicle 1
 - ▶ Directional decreases in CO, increases in CO2 and no change in HC
- Directional increases in NOx were observed with the use of oxygenates in both vehicles
 - ▶ E10 gave directional increase in NOx compared to E0 at equivalent RON
 - ▶ E10 gave directionally higher NOx than ETBE (at equivalent oxygen) and E20 (splash blended so higher RON)
- ▶ General decrease in CO with the use of ethanol
 - Effects were not significant in vehicle 1
 - ▶ Significant increase in vehicle 2 for ETBE which was also observed for HC

Summary of Results

- Fuel effects appear small and on the whole were not statistically significant, directional trends present in both vehicles were noted as follows:
- When no oxygenate was present there was a directional increase in particulate mass and number with increasing RON
 - ▶ CO2 and NOx directionally increased and CO directionally decreased
- Trend toward reducing particulate number with "splash blended" oxygenate-containing fuels (increasing RON)
 - Although NO similar trend observed for PM
 - When fuel properties are matched different (although consistent) trends are observed depending on the octane level
- ▶ General trend towards increasing NOx and decreasing CO with increasing oxygenates
- Fuel consumption results reflected oxygen content and calorific value of the fuels

Conclusions and Next Steps

- In general the results are in line with what would be expected from previous experience in diesel vehicles
- ▶ The fuel effects on emissions are fairly small compared to vehiclevehicle calibration differences
- The PM measurements are low and at the limit of the test capability which may explain why some effects are "seen" in PN but not PM
- ► Fuel "leaning out" effects may explain some of the trends observed with oxygenates e.g. particulates, CO and NOx
 - Further analysis of trends versus oxygen content may help establish whether chemistry or physics dominates
- Further analysis of fuel composition and distillation results may help understand the trends in emissions especially effect of changing octane with and without the presence of oxygenates

Thanks for Your Attention!

 Acknowledgements go to members of Concawe STF-25 and STF-20 task forces as well as Shell for providing statistical support