

Magnetic Resonance Imaging of Gas Flow in a Diesel Particulate Filter

N. P. Ramskilla, L. F. Gladdena, A. P. E. Yorkb, A. J. Sedermana, T. C. Watlingb

^a Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK ^b Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, UK

(Corresponding author's e-mail: npr24@cam.ac.uk)

Cambridge Particle Meeting 2015
3rd July 2015

Department of Chemical Engineering and Biotechnology

Outline of the talk

Introduction to DPFs

Motivation for the study

Brief background on MRI

Experimental details

Gas flow velocity imaging in a DPF

Effect of PM-deposition on gas flow in a DPF

Summary

Introduction

Motivation

- The primary function of a DPF is for the removal of PM and abatement of the harmful species
- These processes do not occur in isolation, but in combination with the engine
 - fluid dynamics of the exhaust gas must also be considered
- Much of the work in the literature has been computational modelling ^{1,2}
- MRI has been used to non-invasively investigate the gas flow in a DPF
 - > provide further insight into the physical processes taking place

2. Bisset (1984) Chem. Eng. Sci., **39** 7-8 pp. 1233-1244

Why use MRI?

- Typically regard MRI as a medical imaging technique
 - > non-invasive
 - > can be used to study opaque systems
 - > chemically sensitive
 - > motion sensitive
- Utilise these properties to study engineering systems

MRI vis Walk bationin of calcood flow

➢ Heterogeneous catalysis Taylor flow in a monolith ³

Multiphase flow Velocity maps about a single rising bubble 4

- 3. Sederman et al. (2007) Catal. Today, 128 (1-2) 3-12
- I. Tayler et al. (2012) Phys. Rev. Lett. 108, 264505

Experimental set-up

Experimental details

- 10 images of the axial velocity (v_z) in the transverse (xy) plane were acquired
- Sulphur hexafluoride (SF₆) has been used as the NMR active gas
 - $P = 5\pm0.1$ barg and $T = 293\pm5$ K; $\rho = 35$ kg m⁻³, $\mu = 15 \times 10^{-6}$ Pa.s
- Three flow conditions have been studies: Re = 106, 254, 426

Filter substrate properties	
Material	SiC
Channel length/width	155 mm/1 mm
Cell density	300 cpsi
Porosity	52 ± 4 %
Mean pore size	23 ± 5 μm

MRI parameters	
Field of view	18 mm × 18 mm
Data matrix	128 pixels × 128 pixels
Resolution	0.14 mm pixel ⁻¹
Slice thickness	12 mm
Acquisition time	14 minutes

MRI axial velocity (v_z) maps of gas flow in a DPF

Channel-scale velocity profiles of gas flow in a DPF

Analysis of through-wall flow uniformity

- It has been shown that the gas flow will influence the PM deposition in the DPF during operation ⁵
- This in turn will impact the system performance in terms of ⁶:
 - engine back pressure and therefore fuel efficiency
 - > filter regeneration
 - blocking of catalyst sites (in catalytic systems)
- PM will follow the stream lines of the gas flow ⁷

effect of gas flow on the PM deposition profile that would form in a real system

^{6.} Yu et al. (2013) Chem. Eng. J., 22, pp. 68-73

7. Sbrizzai et al. (2005), Chem. Eng. Sci. 60, 23, pp. 6551-6563

Analysis of through-wall flow uniformity

$$NUI = rac{\sigma_{v_{xy}}}{\mu_{v_{xy}}} egin{array}{ll} NUI & ext{non-uniformity index } ^{5} \ \sigma_{v_{xy}} & ext{standard deviation } \mathbf{v_{xy}} \ \mu_{v_{xy}} & ext{average } \mathbf{v_{xy}} \ \end{array}$$

 The through-wall velocity profile becomes <u>less uniform</u> as the inlet gas flow rate increases

Effect of soot deposition on the gas flow field

- Comparison between gas flow in:
 - 'clean' substrate
 - soot-loaded substrate
 - > 90 mins @1500 rpm, 5 bar IMEP, 30% EGR
- Measurements were carried out under the same flow conditions (Re = 100).

Athanasios Tsolakis José M. Herreros Isaline Lefort Engine: Lister-Petter TR1 diesel engine Bore × stroke: 98.4mm × 101.6 mm Max. torque: 39.2 Nm @ 1800 rpm Max. power: 8.6 kW @ 2500 rpm Compression ratio: 15.5

Fuel: Ultra-low sulfur diesel

Effect of soot deposition on the gas flow field

MRI axial velocity (v_z) maps of gas flow in a DPF

Effect of soot deposition on the gas flow field

channel-scale velocity profiles of gas flow in a DPF

Summary

- MRI velocimetry has been used successfully to study gas flow in a DPF
 - 2D images of the axial velocity along the substrate were acquired
 - channel-scale profiles of the axial and through-wall velocity were obtained
- Data were used to assess how the gas flow may influence PM deposition
- It was observed directly how the PM deposition influences the gas flow field
- There are many other applications of MRI velocimetry
 - effect of catalyst distribution on the gas flow
 - direct validation of computational fluid dynamics (CFD) models

Acknowledgements

