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Behavioral Models are Great!

Models can be used for:

+  The automated generation of tests via MBT;

- Software verification using safety/liveness requirements;

+ Detecting behavioral regression via equivalence checking;
+Visualization of behavior.

Don’t learn models! Use the code instead
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Figure 1: Eclipse CDT is used for parsing C++; the AST is then transformed according to
our rules into an unbounded model; with user input, the model is bounded and ready.

Using mCRL2[1] as modeling formalism, gives us access to efficient
and reliable model-based techniques for model generation, reduction,
verification, and manipulation.
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Figure 2: The tool provides a GUI for manipulation of the intermediate SC++ model; allow-
ing the user to submit bounds, abstract away components, and generate models.
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Handling Scalability

One potential technique aimed towards avoiding state-space explosion
and thus improving the scalability of the tool:

Component-wise generation and reduction Generating models for
individual sub-components first and then reducing these models,
reduces potential exponential growth caused by parallel composition.
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Figure 3: Using reduced models of sub-components, can allow circumvention of a potential
state-space explosion.

Extensive Programming Feature Support
SSTraGen supports most modern OOP features, including:
« Pass-by-reference,

= higher order functions, e.g. lambda functions,

* recursion,

+ alias’ing,

* inner classes

Case Studies

So far, we have successfully used the tool on several components

within Philips, including:

« A component of 300 LOC, that was used to visualize an invariant
over its instances.

« A component of 600 LOC, that we have shown to fit within a
preexisting UML diagram.
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