for Behavioral Models

A MasCot Software Restructurings Project (17933)

P.H.M. van Spaendonck, Msc.

Behavioral Models are Great!

Models can be used for:

+ The automated generation of tests via MBT;

- Software verification using safety/liveness requirements;

+ Detecting behavioral regression via equivalence checking;
+Visualization of behavior.

Don’t learn models! Use the code instead

User input
Eclipse Transformation
C++ Code CDT AST rules SC++
aviour
M
Behavioral
Model

Figure 1: Eclipse CDT is used for parsing C++; the AST is then transformed according to
our rules into an unbounded model; with user input, the model is bounded and ready.

Using mCRL2[1] as modeling formalism, gives us access to efficient
and reliable model-based techniques for model generation, reduction,
verification, and manipulation.

File

Process

¥ GRoot: ionControll CEAER =
@ act! (ActuatorM
@ 2ct2 (ActuatorModel Susy

ntroller class provides the following methods:

i (type= Numben): [04]

flatten

i (ype= Numben): [04]

i - o x

ontroller class has the
ActuatorMadel act1;
ActuatorModel act;

| act2 | nullptr;

12| freshVar | freshVarO | length | | inc

1) > |
01>

1
length)readlocal,) |> ite
1>

o= delta
< 2 m v0: Value. (s Numbe(v0) && is_Number(v0)) -> call_func_t(main, exten
@ ActuatorModel SuspensionController(proc e, Iras :List(LocRefAssignment). return_func_t(main, extend, v, Ira

3 SuspensionController Suspensiot
+ sur s : List(LocRefAssignment). throw_func_t(main, extend, Iras))

+ sum v0: Value. (is_Number(v0) && is_Number(v0)) -> call_func_t{main, flatter
sum v : Value, Iras : List(LocRefAssignment). return_func_t(main, flatten, v, Irac
Topinterface
+ sum lras: List{LocRefAssignment). throw_func_t(main, flatten, Iras))

init allow({call_func, retum_func, throw_func, load_comm, store_commi,
comm((callfunc_ticall func_b->call_func, retum_func_tjreturn_func_b->return_func, th
Topinterface || C(main, init map) || C(act1, init_mapllength->Number(2)) [| C(act?, init_

vs: ListValue);

copy

Figure 2: The tool provides a GUI for manipulation of the intermediate SC++ model; allow-
ing the user to submit bounds, abstract away components, and generate models.

Technische Universiteit
Eindhoven
University of Technology

In collaboration with:

5 PHILIPS
TUDelft a0 “Esi

Handling Scalability

One potential technique aimed towards avoiding state-space explosion
and thus improving the scalability of the tool:

Component-wise generation and reduction Generating models for
individual sub-components first and then reducing these models,
reduces potential exponential growth caused by parallel composition.

Controller Controller

H b

Member Member

Figure 3: Using reduced models of sub-components, can allow circumvention of a potential
state-space explosion.

Extensive Programming Feature Support
SSTraGen supports most modern OOP features, including:
« Pass-by-reference,

= higher order functions, e.g. lambda functions,

* recursion,

+ alias’ing,

* inner classes

Case Studies

So far, we have successfully used the tool on several components

within Philips, including:

« A component of 300 LOC, that was used to visualize an invariant
over its instances.

« A component of 600 LOC, that we have shown to fit within a
preexisting UML diagram.

References

[1] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice
Laveaux, Thomas Neele, Erik P. de Vink, Wieger Wesselink,
Anton Wijs, and Tim A. C. Willemse. The mcrl2 toolset for
analysing concurrent systems. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 21-39, Cham,
2019. Springer International Publishing.

/ Formal Systems Analysis — Department of Mathematics and Computer Science

