
A Complete Formal Specification and Verification
of the BesW software control system of
the Maeslant Storm Surge Barrier
Adrian Beers, Jore Booy, Jan Friso Groote, Johan van den Bogaard, Mark Bouwman

Formal System Analysis, Mathematics and Computer Science

The Maeslant Barrier is a storm surge barrier that
protects Rotterdam and its harbour from storm
surges in the North Sea. The BesW software control
system is responsible for all the movements of the
barrier except for pushing and pulling it (Figure 3).

Figure 1: The Maeslant Barrier.

Themodel is around 5.000 lines of mCRL2 code (see
Figure 4) and has a state space size of 4.98 ∗ 1014.
It contains the full behaviour of the software con-
trol system, including failing hardware, and rest and
testing modes (ITO). The model is based on the
current specification document of BesW, which in-
cludes 15.000 lines of PLC code. We specified 40
properties in the modal µ-calculus (see Figure 5).
We were able to verify each property within forty
minutes.
The process of verification is described in Figure 2.
We verified the properties against the model the
mCRL2 specification into a Linear Process Specifica-
tion (LPS), which LPS is combined with a modal for-
mula into a Parameterized Boolean Equation Sys-
tem (PBES). Then, we solve it.

Figure 2: Verifying properties against the model.

Figure 3: The operational processes.

proc Process_HI_OpenDoor(processMode: ProcessMode,
system: MainSystem) =

(processMode == active) -> (
(system == dock) -> (

Dock_Door_ChooseWinchOpen_InOrder(
requireCatchTimer=false).

Dock_Door_Open(requireDevicesReady=true).
Dock_Door_CheckOpened

) +
(system == besl) -> (skip) +
(system == joint) -> (Joint_Jack_Control) +
(system == ballast) -> (

Ballast_Comps_DrainWithPumps_General.
Ballast_Comps_DrainWithRestPumps

)
) + ...

Figure 4: A fragment of mCRL2 specification.

[true*.
internal_controlStart(operational, processOpenDoor,

active).
(!internal_controlEnd)*

]
(forall doorOpenedSensors: List(List(Bool)).

val(#doorOpenedSensors == 3 && (forall i: Nat.
i < 3 => #(doorOpenedSensors.i) == 2)) =>

[
input_dockDoorOpened(doorOpenedSensors) .
(!internal_controlEnd)* .
internal_controlEnd . (!internal_controlEnd)*

]
(forall processMode: ProcessMode.
[internal_controlStart(operational, processOpenDoor,

processMode)]
val((processMode == finished)

==
(exists i,j,i’,j’: Nat. (i < 3 && j < 2 && i’ < 3

&& j’ < 2 && i != i’ && doorOpenedSensors.i.j
&& doorOpenedSensors.i’.j’)

))))

Figure 5: The process Open Door will finish if and
only if at least two limit switches indicate the door
is opened.

