CHALLENGES

* Many integration issues arise from unclear interfaces between components
* Problems with 3 party components
- Components developed by different teams

User Needs System Validation
System Requirements System Verification
System Design System Integration
Component Design Component Verification

Component Implementation

time
* Integration issues might require iterating on the component or even the system design

* Hard to predict when iteration ends, and full integration is achieved

CAUSES

TNOESI

Powered by industry
and academia

mathijs.schuts@tno.nl

Preventing and Diagnosing System Integration Issues

Using an open-source approach: Component Modeling & Analysis (ComMA)

* Interface descriptions are often minimal

* Typically, listing only call signatures

* A document-based engineering approach

—Can lead to ambiguity and imprecision

« Commonly missing elements include

* The allowed order of calls

- Expected timing behavior

* Constraints on data

SOLUTION DIRECTION

* Models include commonly missing elements
 Behavior by protocol state machine
—Contract between client(s) and server; allowed sequences of calls
- Constraints
—-Timing; specifying timing intervals between calls
— Data; valid value ranges for call parameters
* Unambiguous, precise models can mitigate integration problems

COMMA DESIGN MODELS

* The Domain Specific Languages (DSLs) incorporate previously missing elements

* The DSLs use an interface/implementation technology agnostic notation

SIGNATURE

commands

Status PowerOn

int TakePicture(Time timestamp)
signals

PowerOff
notifications

Click

INTERFACE (BEHAVIOR)

TIME & DATA CONSTRAINTS

timing constraints

TC1 in state On command TakePicture -

-> notification Click

TC2 in state Off command PowerOn and reply(Status::0K)
-> [.. 100.0 ms] between events

[16.0 ms .. 75.0 ms]

COMPONENTS

initial state Off {
transition trigger: PowerOn
do: reply(Status::0K) next state: On
OR
do: reply(Status::Failed) next state: Off
}
state On {
transition trigger: TakePicture(Time timestamp)
do: reply(*) Click next state: On

transition trigger: PowerOff next state: Off

component componentCamera
provided port IlLens lensPort
provided port ISystem systemPort

functional constraints

SetZoom and AutoFocus are only
FC1 {

use events

command systemPort: :PowerOn

allowed when system is on

THE COMMA APPROACH

User Needs N\

System Requirements

System Design

Component Design

V 4 . . >
/ System Validation =
/ System Verification
V4 :
/ System Integration

Component Verification

Component Implementation

MODEL QUALITY CHECKS (VERIFICATION) =——

client | | middleware server
« Goal: detect interface design errors before implementation begins | T | u | T ‘
« Quality of interface model)
« Unreachable states: if there is no sequence of transitions to get to Sigl)
that state
_Sigl...)
- Deadlock states: if no transitions can be executed in that state
- Sink states: if there is no transition that allows to leave that state |
client | | middleware server
- Livelock states: if there is no sequence of transitions to get to the ‘; | . | . |
“home” state
 Quality of interactions Sigt.)
- Race conditions: if both a client and a server can independently AR .
make a choice to execute a transition
Sigi...) L
SIMULATOR (VALIDATION) T
e . . Actions Log
* Goal: identify design model errors before the G o natace Gndd | e

implementation phase -> C: c.Interface.Cmd()
S: c.Interface.Sig() | |-

i Step #2
N: c.Interface.Notify() <~ R: c.Interface.Cmd(Reply:0k)
Step #3
-> S: c.Interface.Sig()
- Explore an interface or component model’s step #4
execution behavior reasnterianasiara iy L)
Sequence
chent server

' C: c.Interface.Cmd() >

_ R: c.Interface Cmd(Reply-Ok)

S: c.Interface Sig()

>
>

' N c.Interface Notify()

Controls
Log states Log variables = =
Step back | Reset
Save state ‘ Restore state

- CommaSuite is an Eclipse Foundation project

"time

r.m,

OFFLINE RUNTIME MONITORING (DURING & POST-INTEGRATION)

» Goal: investigate integration issues during and post-integration

 Offline runtime monitoring of stored execution logs

 Translators exist for OpenAPI/AsyncAPl and supported proprietary technologies to monitor input

- Performed as a post-processing step

- Alongside the verdict, it supplies statistical data

— Such as model coverage

QOO
SOA—

lObserved calls

ComMA enerate Monitor
models

3

OK / Problem + reason / Statistics

= ONLINE MODEL-BASED TESTING (PRE-INTEGRATION)

» Goal: test components pre-integration to prevent issues during the integration phase

« Online MBT for confidence testing, i.e., for checking the ICompB interface (see figure below)

 Test applications are automatically generated from interface and/or component models

- Adapters are automatically generated for OpenAPI/AsyncAPI and supported proprietary technologies

[Test application A]“

SKELETON IMPLEMENTATIONS (EARLY INTEGRATION)

‘ E ‘ L I p S E® Goal: verify program flows by early integration with real and skeleton implementations

FOUNDATION » Generate a skeleton implementation from component model

* https://eclipse.dev/comma

Hardware component

Skeleton implementation

Skeleton implementation

CommaSuite . .
Real implementation

Hardware component

Skeleton implementation

Skeleton implementation

- Component model specifies partial behavior, typically the main program flows

- Skeleton implementations comply with specified timing budgets

This functionality is not yet included in the open-source release

Hardware component

Real implementation

Real implementation

Real implementation

Adapter A

Component A

Adapter A

Adapter B

“[Test application B]

Adapter B

www.esi.nl

.

-

.
.
.
-

TNOESI

Powered by industry
and academia

mathijs.schuts@tno.nl

A DECADE OF INNOVATION WITH COMMA AT PHILIPS 1GT

Component Modeling & Analysis (ComMA): 2015 - 2025

* Context

v— « Components are developed by multiple teams, parties, and suppliers
Detector

* Challenge

* Integrating all components

e Solution

» Proxy code generation
 Offline runtime monitoring of components
* Online model-based testing of components

COMMA'’S ADOPTION AT PHILIPS IGT

. Model-Based Testing (MBT
git >)

Test application

Generate test application and adapter New in CommaSuite version 3.0.0

« Wireshark capture from OpenAPI/
AsyncAPI and Philips proprietary
interface middleware to the
monitor’s input format

- MBT adapter generation for

A OpenAPI/AsyncAPI and Philips

proprietary interface middleware

Adapter

I1Apps

GUI/Joysticks Component

Implementation

ICamera

Created Proxy code
by a developer

ComMA
Models

7 opena Runtime monitorin

Stand
Patient Support

X-ray Generator
X-Ray Detector

< AsyncAPI
Generate Generate and build T mmTmmmmmm oo m e s > created tests

Manually

Observed events

Generate monitor

Monitor

OK / Problem + reason / statistics

RUNTIME MONITORING MODEL-BASED TESTING

. . Command-line / Graphical user interface
Command-line (for CI/CD automation) (for CI/CD automation) (forpdeveloper laptop)

CO' I I OI lel lt usage: testapplication.py [-h] [-1] [-c] [-a {random,improved}] § Eclipse CommaSuite Test Application _ O -
p . [-S SAVE I r RUN I —cr CONTINUE_RUN I Tesr CQNTINUE-AND'SAVE-RUN] [-SC STQP_CQNDITIQN] ava -cp C:/Users/schutsmiw/Downloads/eclipse-commasuite-ide-2.1.1.202503171459-win32.win32.x 86_64/workspace/VendingMachineTestAppExample/bin/: C:/U Stop
Y = - = - = - -
r] O I I I O r options: 2025-07-14T11:32:27: < R: cvmSenvicePort. LoadProduct() [T Savetofile
exe C u IO ~h, —help show this help message and exit 2025-07-14T11:32:27: Constraint changed: "StockConstraint [ConstraintState(state="ProductActions’, index=Mone, variables={stock:{Productiame:COLA" ! :
-1, —-log Log to console 2025-07-14T11:32:27: Constraint changed: ‘RunToCompletionProvidedinteracesConstraint [ConstraintState(state="NoPendingCommand', index=(1, 1), va Rerun from file
-c, ——coverage Save coverage information 2025-07-14T11:32:27: Constraint changed: ‘StockConstraint [ConstraintState(state=Productictions’, index=(5, 1), variables={stock {ProduciName:COLA" * ded
! 2025-07-14T11:32:27: == C: cvmSenicePort LoadProduct{PreductName:JUICE) OURNUEECORCC M

—-a {random, improved}, ——algorithm {random,improved}

- 2025-07-14T11:32:27: Constraint changed: ‘RunToCompletionProvidedinteracesConstraint [ConstraintState(state="NoPendingCommand, index=None, va i saw
Choose test algorithm (default: random) g n [{ g ™ Continue and save recorded run

2025-07-14T11:32:27: Constraint changed: ‘StockConstraint [ConstraintState(state='"ProductActions’, index=None, variables={stock {ProductMame:COLA"

-5 SAVE, ——save SAVE Save recording file 2025-07-14T11:32:27: =- R: cvmSenicePort.LoadProduct() Runningtime: 17s
—r RUN, ——run RUN Recorded run 2026-07-14T11:32:27: Constraint changed: ‘RunToCompletionProvidedinteracesConstraint [ConstraintState(state="NoPendingCommand, index=(1, 1), va State coverage: 4/6 (67%)
—cr CONTINUE_RUN, --continue_run CONTINUE_RUN 2025-07-14T11:32:27: Constraint changed: "StockConstraint [ConstraintState(state="ProductActions’, index=(5, 1), variables={stock:{Producthame:COLA" * Event) 7110 (70%)
Continue recorded run 2025-07-14T11:32:27: = C: cvmUserPortInsertCoin() WENT COVErage:
—csr CONTINUE_AND_SAVE_RUN, —-continue_and_save_run CONTINUE_AND_SAVE_RUN 2025-07-14T11:32:27: Constraint changed: ‘RunToCompletionProvidedinteracesConstraint [ConstraintState(state="NoPendingCommand’, index=Mone,va Transition clauses coverage: 11/23 (44%)
Continue and save recorded run %g%gg;—:}:;q%%; Cogstraintccha;gtretdl::;'rI]nsingiF)Constraint [ConstraintState(state="CoinReply’, index=MNone, variables={result CoinResultACCEPTEI Save Coverage Info
_ L e - 13227 =- C: cvmCoinPort. CheckCoin
sc STOP_CONDITION, —-stop_condition STOP_CONDITION 2025-07-14T11:32:27: Constraint changed: InsertCoinConstraint [ConstraintState(state=CoinReply, index=(1, 1), variables={result CoiNRESULACCEPTEL Tout strateqy: fendom
Provide minimal values for: ey :) h ; : est strategy: andom
A A A A . 2025-07-14T11:32:27: -= R: cvmCoinPort. CheckCoin(CoinResult ACCEPTED)
timeout(<value>), where value is a :|.|:|teger" in secr:lnds, 2025-07-14T11:32:27; Constraint changed: InsertCoinConstraint [CoenstraintState (state="AwaitCheckResult, index=Mone, variables={result CoinResultAC
o o o stateCoverage(<value>), where value is a integer in percentage; 2025-07-14T11:32:27; =- R: cvmUserPortInsertCoin(1, CoinResult ACCEPTED)
eventCoverage(<value>J, where value is a integer in percentage; and/or 2025-07-14T11:32:27: Constraint changed: 'RunToCompletionProvidedinteracesConstraint [ConstraintState(state="MoPendingCommand’, index=(4, 1), va
transitionCoverage(<value>), where value is a integer in percentage. 2025-07-14T11:32:27: Constraint changed: InsertCoinConstraint [ConstraintState(state="AwaitCheckResult, index=(0, 1), variables={result: CoinResult AC
With these functions expressions can be made using "and" and "or". 2025-07-14T11:33:04: -= C: cvmUserPortInsertCoin()
(example: —-sc "timeout(10) and eventCoverage(50)") 2025-07-14T11:33:04: Constraint changed: 'RunToCompletionProvidedinteracesCenstraint [ConstraintState(state=MoPendingCommand’, index=MNone, va
: PR 2025-07-14T11:33:04: =- C: cvmCoinPort.CheckCoin()
1 The expressions are left-associative. So : . .)) o)))
Interface monitoring error: there is no transition for the event in the current state of the model - et " 2025-07-14T11:33:04: Constraint changed: 'InsefCoinConstraint [ConstraintState(state="CoinReply’, index=MNone, variables={result CoinResult ACCEPTEI
9 Interface State Transition . lslgec'“t(:"al“e’J and stateCoverage(<value>) or eventCoverage(<value>) 2025-07-14T11:33:04: Constraint changed: InsertCoinConstraint [ConstraintState(state=CainReply, index=(1, 1), variables={result CoinResultACCEPTEL
VacuumClient SuperComp ° shou.d be reacd as . 2025-07-14T11:33:06: -> R: cvmCoinPort CheckCoin(CoinResult ACCEPTED)
(t:l.meot‘lt(<va'|.ue>) and stateCoverage(<value>)) or eventCoverage(<value>)". 2025-07-14T11:33:06: Constraint changed: ‘InsettCoinConstraint [ConstraintState (state="AwaitCheckResult, index=Mone, variables={result CoinResultAC
! ! 10 IV 100% 100% (default: timeout(10)) 2025-07-14T11:33:06: = R: cvmUserPortinsentCoin(2, CoinResult ACCEPTED)
i command VacuumOn() ! M /o o 2025-07-14T11:32:06: Constraint changed: 'RunToCompletionProvidedinteracesConstraint [ConstraintState(state="MoPendingCommand’, index=(4, 1), va
X - ipperpound 2025-07-14T11:33:06: Constraint changed: InsertCoinConstraint [ConstraintState(state="AwaitCheckResult, index=(0, 1), variables={resultCoinResultAC
' reply() to VacuumOn t)
ety oK(s lACq 67% 22%
I notification Vacuum
™ Break [y o cvmUserPort. OrderProduct(ProductMame:WATER) i Select choice:
Active state: Vacuum os 5.3 cvmSenvicePort SwitchOff()
|F"Uﬂ‘"||i_fl 100% 100% Pause |5 ¢ cymSenicePort LoadProduct(Produciame:WATER) v _'l

Continue L

Mo global variabl .
Ma(?h?ne \},aa.::ume:ﬂachine in state Vacuum |TE|T| pe ratu re 1 D DD.-'rl:l 1 GG%

!
!
|
|
|
|
|
|| Values of global variables and current machine states:
|
!
1
|
|
i
|
|

|
|
|
|
| notification VacuumOK() at time 2.375
i
|
|
i
|
|

o
VacuumClient SuperComp | ”_ElEIE 100% B

Partners: Contact

mathijs.schuts@tno.n|
PHILIPS :

www.esi.nl

	Slide 1: Preventing and Diagnosing System Integration Issues Using an open-source approach: Component Modeling & Analysis (ComMA)
	Slide 2: A Decade of Innovation With ComMA at Philips IGT Component Modeling & Analysis (ComMA): 2015 - 2025

