
•Many integration issues arise from unclear interfaces between components

• Problems with 3rd party components

•Components developed by different teams

• Integration issues might require iterating on the component or even the system design

•Hard to predict when iteration ends, and full integration is achieved

Preventing and Diagnosing System Integration Issues
Using an open-source approach: Component Modeling & Analysis (ComMA)

mathijs.schuts@tno.nl

SOLUTION DIRECTION

•Models include commonly missing elements

•Behavior by protocol state machine

–Contract between client(s) and server; allowed sequences of calls

•Constraints

–Timing; specifying timing intervals between calls

– Data; valid value ranges for call parameters

•Unambiguous, precise models can mitigate integration problems

CAUSES
• Interface descriptions are often minimal

• Typically, listing only call signatures

•A document-based engineering approach

–Can lead to ambiguity and imprecision

•Commonly missing elements include

• The allowed order of calls

• Expected timing behavior

•Constraints on data

CHALLENGES

THE COMMA APPROACH

COMMA DESIGN MODELS

• The Domain Specific Languages (DSLs) incorporate previously missing elements

• The DSLs use an interface/implementation technology agnostic notation

• CommaSuite is an Eclipse Foundation project

• https://eclipse.dev/comma

• Goal: detect interface design errors before implementation begins

• Quality of interface model

• Unreachable states: if there is no sequence of transitions to get to
that state

• Deadlock states: if no transitions can be executed in that state

• Sink states: if there is no transition that allows to leave that state

• Livelock states: if there is no sequence of transitions to get to the
“home” state

• Quality of interactions

• Race conditions: if both a client and a server can independently
make a choice to execute a transition

MODEL QUALITY CHECKS (VERIFICATION)

• Goal: identify design model errors before the
implementation phase

• Explore an interface or component model’s
execution behavior

SIMULATOR (VALIDATION) • Goal: test components pre-integration to prevent issues during the integration phase

• Online MBT for confidence testing, i.e., for checking the ICompB interface (see figure below)

• Test applications are automatically generated from interface and/or component models

• Adapters are automatically generated for OpenAPI/AsyncAPI and supported proprietary technologies

ONLINE MODEL-BASED TESTING (PRE-INTEGRATION)

ICompB

Component B Test application BTest application A

Adapter B

Adapter A Adapter B

Component A

Adapter A

OFFLINE RUNTIME MONITORING (DURING & POST-INTEGRATION)

• Goal: investigate integration issues during and post-integration

• Offline runtime monitoring of stored execution logs

• Translators exist for OpenAPI/AsyncAPI and supported proprietary technologies to monitor input

• Performed as a post-processing step

• Alongside the verdict, it supplies statistical data

– Such as model coverage

generate

Observed calls

OK / Problem + reason / Statistics

Monitor

Component A Component B

ComMA
models

SKELETON IMPLEMENTATIONS (EARLY INTEGRATION)

This functionality is not yet included in the open-source release

Hardware component Hardware component Hardware component

Skeleton implementation

Skeleton implementation

Real implementation

Skeleton implementation

Skeleton implementation

Real implementation

Real implementation

Real implementation

• Goal: verify program flows by early integration with real and skeleton implementations

• Generate a skeleton implementation from component model

• Component model specifies partial behavior, typically the main program flows

• Skeleton implementations comply with specified timing budgets

Partners: Contact

• Context
• Components are developed by multiple teams, parties, and suppliers

• Challenge
• Integrating all components

• Solution
• Proxy code generation
• Offline runtime monitoring of components
• Online model-based testing of components

AppApp Workflow

ICamera IMovements

Camera Movements

GUI/Joysticks

Stand
Patient Support

X-ray Generator
X-Ray Detector

IApps

App

Component
Implementation

ComMA
Models

Created Proxy code
by a developer

Command-line / Graphical user interface
(for CI/CD automation) (for developer laptop)

Model-Based Testing (MBT)

Runtime monitoring

Generate monitor

Compiled
Component

Observed events

OK / Problem + reason / statistics

Monitor

Manually
created tests

Test application

Adapter

Compiled
Component

Generate test application and adapter

Generate and buildGenerate

Build

New in CommaSuite version 3.0.0
• Wireshark capture from OpenAPI/

AsyncAPI and Philips proprietary
interface middleware to the
monitor’s input format

• MBT adapter generation for
OpenAPI/AsyncAPI and Philips
proprietary interface middleware

mathijs.schuts@tno.nl

A DECADE OF INNOVATION WITH COMMA AT PHILIPS IGT
Component Modeling & Analysis (ComMA): 2015 - 2025

mathijs.schuts@tno.nl

COMMA’S ADOPTION AT PHILIPS IGT

RUNTIME MONITORING MODEL-BASED TESTING

Command-line (for CI/CD automation)

Component
execution Monitor

Errors/warnings / Statistics / Coverage

Compiled
Component

	Slide 1: Preventing and Diagnosing System Integration Issues Using an open-source approach: Component Modeling & Analysis (ComMA)
	Slide 2: A Decade of Innovation With ComMA at Philips IGT Component Modeling & Analysis (ComMA): 2015 - 2025

