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The high-tech equipment industry is challenged by long life-times and increased variability1

• Many product variants must be developed and evolved over several decades

• Upgrades of hardware and software components to add new functionality and counter obsolescence

The industry is addressing this challenge by moving towards platform-based design

• Developing and evolving systems from a repository of reusable components

• Additional innovation required to further increase engineering productivity and 
address scarcity of skilled engineers2

How can we effectively develop and evolve (software) product variants that satisfy (non-)functional 
requirements as technology evolves?

INDUSTRY CHALLENGES

[1] Hendriks, T. and Azur, S. “Vision and Outlook for Systems Architecting and Systems Engineering in the High-tech Equipment Industry" TNO Report 2024 R10542, 2024
[2] A. van der Werf, et al. “Made in NL: The value of the Dutch high-tech manufacturing industry,” PricewaterhouseCoopers, 2024
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1. Specifying the software components to integrate requires considerable expertise

• Need for democratization of engineering to address scarcity of engineers and optimization to improve 
competitiveness of system

2. Software component integration takes a lot of time and effort

• Need for automation to increase engineering productivity

3. Updating system configurations and software components as technology changes is time-consuming

• Need for technology-agnostic abstractions and automation

KEY INGREDIENTS
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TechFlex addresses the challenge of increasing engineering productivity associated with system diversity and 
evolution at the level of the software platform

We propose a model-based approach to specification and deployment with three steps:

1. Technology-agnostic specification of reusable building blocks (abstraction)

2. Technology-specific generation of build, packaging, and deployment artifacts (automation)

3. Synthesis of component compositions and deployment (democratization, automation, optimization)

TECHFLEX APPROACH
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To enable technology-agnostic specification, we started with an analysis using a Software Lifecycle Model

• Distinguishes different phases in the software lifecycle

• Captures all artifacts, e.g. components, interfaces, container images, their relations and technology dependencies

• Structuring software development in this way ensures that changes only propagate downwards through phases

SOFTWARE LIFECYCLE MODEL
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We defined a new family of technology-agnostic DSLs to specify elements and relations in all life cycle phases

• Abstract from the identified technology dependencies

• Variants are specified as instances of DSLs minimizing manual intervention

• Used existing Component DSL and added additional DSLs tailored to existing development processes

Create technology-specific generators to automatically create relevant development artifacts

• Automation reduces effort of repetitive tasks

• Technology-specific generators are phased in and out as software technologies evolve

• Address technology changes at the level of the product family instead of the individual variant

TECHNOLOGY-AGNOSTIC SPECIFICATION



Build, packaging, and deployment chain

TECHFLEX DSL WORKFLOW

Asset library 

Component DSL

Deployment 
DSL

Integration DSL

12

Build 
Configuration 

DSL

Application
DSL

Runnable Unit 
DSL

Celix / Java 
bundles

Celix apps. / 
fat jars

Container 
images

Life-cycle phases

Specified

Implemented

Generated

Instantiated

Drives 
build chain



13

SYNTHESIS-BASED ENGINEERING OF SOFTWARE-INTENSIVE SYSTEMS
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Is it really necessary to manually specify the composition of components and their deployment?

• Specifying the components to integrate and where to deploy them requires significant effort and expertise

Synthesis automatically configures a system from a repository of reusable components

• Uses models of components and their provided/required capabilities, resource budgets, and non-
functional behavior, as well as optimization criteria

Potential benefits of system synthesis

• Automation increases engineering productivity

• Synthesis democratizes system integration, reducing the dependency on experts

• Design optimization may increase quality/performance while reducing cost

SYNTHESIS OF COMPONENT-BASED SYSTEMS
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Components are modelled according to the OSGi 
capability-requirement model1

• Provided and required interfaces and capabilities

• Provided attributes and required properties of 
an interface (like quality)

Resource model considers compute cores and 
memory as consumables

BUILDING ON EXISTING WORK

Optimization using Genetic Algorithm2

• Tunable computation/accuracy trade-off

• Provides good results in a few seconds

Proof-of-concept tool developed by Thales and used 
as starting point in this project

[1] “Using Requirements and Capabilities” [Online]. Available: https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html

[2] Distributed Evolutionary Algorithms in Python [online], https://github.com/DEAP/deap
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https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
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Introducing modules into component model helps managing the complexity of complex systems

• Allow structured decomposition of system in multiple steps, helping understanding

• Allows specification of provided/required capabilities at higher level than components

• Allows (timing) requirements to be specified before constituent components are known
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We validate our methodology using an (anonymized)  industrial case study from the defense domain comprising

• 70 interface specifications

• 57 component specifications

• 34 module specification

The total instantiated case has a
few hundred elements in it

These must be deployed
on 154 computing nodes

VALIDATION OF METHODOLOGY
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System resolved in < 10 seconds

• Manual resolution would take several weeks

• Up front investment in modelling is required

Multiple technology-agnostic generators

• K8s generators

• Thales specific generators

Need for various visualizations:

• Functional relations

• Structural 

• Deployment
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We demonstrated how automated generation and synthesis from models increases engineering productivity 
and democratizes engineering on a case study from the defense domain

TechFlex addressed this using a model-based approach to specification and deployment with three steps:

1. Technology-agnostic specification of modules and components as reusable building blocks

2. Technology-specific generation of build, packaging, and deployment artifacts

3. Automatic synthesis of component compositions and deployment based on (non-)functional requirements

CONCLUSIONS





Variability and evolution are key drivers of complexity in high-tech equipment. Every product has many 
variation points, resulting in a large number of unique system configurations. These systems must be 
maintained throughout the lifetime of the system, which may last several decades. During this time, digital 
technologies, e.g., containerization and orchestration technologies, may become deprecated or evolve many 
times. Manually configuring, updating, and deploying the software of each product variant, such that both 
functional and performance requirements of customers are satisfied,  is both expensive and time-consuming. 

This presentation describes a synthesis-based approach that aims to increase engineering productivity by 
automating the configuration, integration, and deployment of software for product variants, while considering 
the performance requirements of critical system flows. 

AUTOMATED SYNTHESIS AND DEPLOYMENT OF SOFTWARE INTEGRATIONS
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