TNOESI

Powered by industry
and academia

/e

THALES TNOESI
INDUSTRY CHALLENGES

The high-tech equipment industry is challenged by long life-times and increased variability?!
* Many product variants must be developed and evolved over several decades

* Upgrades of hardware and software components to add new functionality and counter obsolescence

The industry is addressing this challenge by moving towards platform-based design
* Developing and evolving systems from a repository of reusable components

* Additional innovation required to further increase engineering productivity and
address scarcity of skilled engineers?

How can we effectively develop and evolve (software) product variants that satisfy (non-)functional
requirements as technology evolves?

3 [1] Hendriks, T. and Azur, S. “Vision and Outlook for Systems Architecting and Systems Engineering in the High-tech Equipment Industry" TNO Report 2024 R10542, 2024
[2] A. van der Werf, et al. “Made in NL: The value of the Dutch high-tech manufacturing industry,” PricewaterhouseCoopers, 2024

KEY INGREDIENTS

1. Specifying the software components to integrate requires considerable expertise

* Need for democratization of engineering to address scarcity of engineers and optimization to improve
competitiveness of system

2. Software component integration takes a lot of time and effort

* Need for automation to increase engineering productivity

3. Updating system configurations and software components as technology changes is time-consuming

* Need for technology-agnostic abstractions and automation

aaaaaaaaaaa

TECHFLEX APPROACH .

TechFlex addresses the challenge of increasing engineering productivity associated with system diversity and
evolution at the level of the software platform

We propose a model-based approach to specification and deployment with three steps:
1. Technology-agnostic specification of reusable building blocks (abstraction)
2. Technology-specific generation of build, packaging, and deployment artifacts (automation)

3. Synthesis of component compositions and deployment (democratization, automation, optimization)

TECHFLEX WORKFLOW .

Build, package, and deployment chain D)

Technology- Generated

agnostic DSLs

artifacts &
deployment

Technology-specific generators

Drives
build chain ' &

Optimized component selection

Asset library and deployment

I
AT
TTR .
> | \ 4

Non-)functional .
(Manr Jiuactiona Available
System
v Hardware
Requirements

~N

Introduction

Technology-agnostic Specification
and Deployment

Synthesis of Component-based
Systems

Validation

. Conclusions

TECHNOLOGY-AGNOSTIC
SPECIFICATION AND
DEPLOYMENT

TECHFLEX WORKFLOW

Build, package, C_. leployment chain
) |

Technology-

agnostic DSLs Technology-sp&kific generators

aaaaaaaaaaa

Generated
artifacts &
deployment

Drives
build chain

Optimized component selection
Asset library and deployment

Non-)functional .
(Nan-Junctinnd Available
System
. Hardware
Requirements

A

THALES TNOESI
SOFTWARE LIFECYCLE MODEL S

To enable technology-agnostic specification, we started with an analysis using a Software Lifecycle Model
 Distinguishes different phases in the software lifecycle
* Captures all artifacts, e.g. components, interfaces, container images, their relations and technology dependencies

 Structuring software development in this way ensures that changes only propagate downwards through phases

Specified Implemented Generated
Artifacts: Pl ' Artifacts:
Specifications of * Source files « Bundles
* Header files ..
* Interfaces * Applications
e C t ¢ Runnable Units
omponents Technology dependency:
* Modules Technology dependency:

* Implementation
language, e.g. Java or
C++

¢ Product instance ¢ Platform

Generate » Containerization

technology, e.g.
Docker or Podman

10

TECHNOLOGY-AGNOSTIC SPECIFICATON 77

We defined a new family of technology-agnostic DSLs to specify elements and relations in all life cycle phases
e Abstract from the identified technology dependencies
* Variants are specified as instances of DSLs minimizing manual intervention

* Used existing Component DSL and added additional DSLs tailored to existing development processes

Create technology-specific generators to automatically create relevant development artifacts
* Automation reduces effort of repetitive tasks
* Technology-specific generators are phased in and out as software technologies evolve

* Address technology changes at the level of the product family instead of the individual variant

11

THALES TNOES

Powered by industry

TECHFLEX DSL WORKFLOW
a4 Build, packaging, and deployment chain N

Build Ay i Celix apps. / Container
- . bundles Application fat jars Runnable Unit images Deployme
Configuration >
DSL DSL »
DSL J
A
Drives ' -
build chain i
Accot libra { Integration DSL J
S runtime-techflex-ds! - Techflex DSL Samples/demo-20250130/integrationdsl/MDS200Int.integratio.. — O X
File Edit Navigate Search Project Run Window Help
OvEH@ YL Re ANl v i vodoy vy Q imE L
‘= | B *MDS200Int.ntegrationdsl =8 a E;g \
& 1¢integration configuration a 8 Life-cyc|e phases
2e name: nl.esi.techflex.demo.MDS280Int &
Component DSL version: "1.0.0" g]
with components

3

4

5 nl.esi.techflex.demo.DeliveryControl [1, 1.1)
6 nl.esi.techflex.demo.Planner [1, 1.1)

7 nl.esi.techflex.demo.MealDispatching [1, 1.1)
8
9
e

[Specified
[

~—

nl.esi.techflex.demo.MealPreparing [1, 1.1)

nl.esi.techflex.demo.MealDelivering [1, 1.1)

. .] (

12 s ’
Wrtable inset 9:44: 228 [kMot 1M Instantiated

Engineering approach -

SYNTHESIS-BASED ENGINEERING OF SOFTWARE-INTENSIVE SYSTEMS

Traditional Model-Based Verification-Based Synthesis-Based
Engineering Engineering Engineering Engineering

J Development step

Requirements design

System design

Realization in software

(implementation code)

Verification
(against requirements)

Validation
(of requirements)

Legend:

Document-based Model-based (formal)

Document-based Model-based (formal)

Technology-agnostic T —

(fault-free code)

Traditional software
engineering (coding)

specification and

deployment
Testing Formal verification
(model checking)
Testing Testing +
Simulation

Model-based (formal)

Computer-aided
(formal, synthesized)

Code generation
(fault-free code)

Correct-by-construction
(guaranteed)

Testing +
Simulation

13
Manual work / Focus

(Semi-)automatic

(Simplified overview.) I

SYNTHESIS OF COMPONENT-
BASED SYSTEMS

14

- THALES TNOES

TECHFLEX DSL WORKFLOW o

4 Build, packaging, and deployment chain

Build alke Ly a Celix apps. / @ Container
bundles S fat i : .
Configuration S Appg;‘?—tlon at jars X RunnaDI;If Unit images ,
DSL

A

Drives '
build chain =

>
L)

[Component DSL }

T

15

SYNTHESIS OF COMPONENT-BASED SYSTEMS 7%

Is it really necessary to manually specify the composition of components and their deployment?

* Specifying the components to integrate and where to deploy them requires significant effort and expertise

Synthesis automatically configures a system from a repository of reusable components

* Uses models of components and their provided/required capabilities, resource budgets, and non-
functional behavior, as well as optimization criteria

Potential benefits of system synthesis
e Automation increases engineering productivity
* Synthesis democratizes system integration, reducing the dependency on experts

 Design optimization may increase quality/performance while reducing cost

16

BUILDING ON EXISTING WORK

Components are modelled according to the OSGi
capability-requirement model*

* Provided and required interfaces and capabilities

* Provided attributes and required properties of
an interface (like quality)

Resource model considers compute cores and
memory as consumables

Provided interfaces Required interfaces
with attributes with properties
«—— ComponentX
<—

THALES TNOES

Powered by industry
and academia

Optimization using Genetic Algorithm?
* Tunable computation/accuracy trade-off

* Provides good results in a few seconds

Proof-of-concept tool developed by Thales and used
as starting point in this project

17 [1] “Using Requirements and Capabilities” [Online]. Available: https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html

[2] Distributed Evolutionary Algorithms in Python [online], https://github.com/DEAP/deap

https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html

HIERARCHICAL DECOMPOSITON 7%

Introducing modules into component model helps managing the complexity of complex systems
* Allow structured decomposition of system in multiple steps, helping understanding
* Allows specification of provided/required capabilities at higher level than components

* Allows (timing) requirements to be specified before constituent components are known

MDS
Product

wze <200 ms
Delivering

Scheduler Planner

Component Preparer Dispatcher

18

COMPLETE TECHFLEX WORKFLOW ™%

a4 Build, packaging, and deployment chain N

T » Celix / Java Celix apps. / Container

Configtiration bundles . Appll)i;a:-tion fat jars N RunnaDl:;If Unit images Deployment

DSL

N
Drives
build chain

Optimization with Genetic Algorithm

Synthesis of modules, components, and

Dre hardware deployment _'{ Integration DSL

- @
BEEE oo ==
Sysfem '
Component DSL Module DSL Requirements Hardware DSL
DSL
33 O]
-
s])
IE IE

3%,,, = gm v

SYNTHESIS-BASED ENGINEERING OF SOFTWARE-INTENSIVE SYSTEMS

Engineering approach -

J Development step

Requirements design
System design

Realization in software

(implementation code)

Verification
(against requirements)

Validation
(of requirements)

Traditional Model-Based Verification-Based Synthesis-Based
Engineering Engineering Engineering Engineering

Document-based Model-based (formal)

Document-based Model-based (formal)

Technology-agnostic

Synthesis of

Code generation
component-based

Traditional software Tl
specification and

engineering (coding) deployment (fault-free code) SN
Testing Formal verification

(model checking)
Testing Testing +

Simulation

20
Legend: Manual work / Focus

(Semi-)automatic (Simplified overview.) I

©0006®

i 18
i .mmmnu
f !l ") -

' il
e |

VALIDATION

21

THALES TNOESI
VALIDATION OF METHODOLOGY

We validate our methodology using an (anonymized) industrial case study from the defense domain comprising
* 70 interface specifications
* 57 component specifications - ___

* 34 module specification

Meal
Advertisement
Service

Engagement Customer Customer
Detection Identification Retention
Service Service Service

The total instantiated case has a

few hundred elements in it
Platform

Advertisement

These must be deployed sslecgion
on 154 computing nodes sl

Public
Relations
Service

MENU [1-4]

Advertisement
Selection
Service

22

RESULTS

System resolved in < 10 seconds
* Manual resolution would take several weeks

e Up front investment in modelling is required

Multiple technology-agnostic generators
* K8s generators

* Thales specific generators

Need for various visualizations:
* Functional relations
 Structural
* Deployment

o

{ Hardware J -

Hardware
dependency

Functional
dependency

23

©0006®

e (U

B T R W1

CONCLUSIONS

S
|| - e

24

CONCLUSIONS s

We demonstrated how automated generation and synthesis from models increases engineering productivity
and democratizes engineering on a case study from the defense domain

TechFlex addressed this using a model-based approach to specification and deployment with three steps:
1. Technology-agnostic specification of modules and components as reusable building blocks
2. Technology-specific generation of build, packaging, and deployment artifacts

3. Automatic synthesis of component compositions and deployment based on (non-)functional requirements

25

/e

THALES TNO ESI
AUTOMATED SYNTHESIS AND DEPLOYMENT OF SOFTWARE INTEGRATIONS =

Variability and evolution are key drivers of complexity in high-tech equipment. Every product has many
variation points, resulting in a large number of unique system configurations. These systems must be
maintained throughout the lifetime of the system, which may last several decades. During this time, digital
technologies, e.g., containerization and orchestration technologies, may become deprecated or evolve many
times. Manually configuring, updating, and deploying the software of each product variant, such that both
functional and performance requirements of customers are satisfied, is both expensive and time-consuming.

This presentation describes a synthesis-based approach that aims to increase engineering productivity by
automating the configuration, integration, and deployment of software for product variants, while considering
the performance requirements of critical system flows.

	Introduction
	Slide 1
	Slide 2: Automatic Synthesis and DEPLOYMENT of Component-based software Systems
	Slide 3: Industry challenges
	Slide 4: Key Ingredients
	Slide 5: Techflex Approach
	Slide 6: Techflex workflow
	Slide 7: Presentation outline
	Slide 8: Technology-agnostic specification and deployment
	Slide 9: Techflex workflow
	Slide 10: Software Lifecycle model
	Slide 11: Technology-agnostic Specification
	Slide 12: Techflex DSL Workflow
	Slide 13: Synthesis-Based Engineering of software-intensive systems

	Synthesis
	Slide 14: Synthesis of component-based Systems
	Slide 15: Techflex DSL Workflow
	Slide 16: Synthesis of component-based systems
	Slide 17: Building on existing work
	Slide 18: Hierarchical decomposition
	Slide 19: COMPLETE Techflex Workflow
	Slide 20: Synthesis-Based Engineering of software-intensive systems
	Slide 21: Validation
	Slide 22: Validation of methodology
	Slide 23: Results

	Conclusions
	Slide 24: Conclusions
	Slide 25: Conclusions
	Slide 26

	Abstract
	Slide 27: Automated synthesis and deployment of software integrations

