

AUTOMATIC SYNTHESIS AND DEPLOYMENT
OF COMPONENT-BASED SOFTWARE
SYSTEMS
Jeroen Kouwer (Thales) and Benny Akesson (TNO-ESI)

3

The high-tech equipment industry is challenged by long life-times and increased variability1

• Many product variants must be developed and evolved over several decades

• Upgrades of hardware and software components to add new functionality and counter obsolescence

The industry is addressing this challenge by moving towards platform-based design

• Developing and evolving systems from a repository of reusable components

• Additional innovation required to further increase engineering productivity and
address scarcity of skilled engineers2

How can we effectively develop and evolve (software) product variants that satisfy (non-)functional
requirements as technology evolves?

INDUSTRY CHALLENGES

[1] Hendriks, T. and Azur, S. “Vision and Outlook for Systems Architecting and Systems Engineering in the High-tech Equipment Industry" TNO Report 2024 R10542, 2024
[2] A. van der Werf, et al. “Made in NL: The value of the Dutch high-tech manufacturing industry,” PricewaterhouseCoopers, 2024

4

1. Specifying the software components to integrate requires considerable expertise

• Need for democratization of engineering to address scarcity of engineers and optimization to improve
competitiveness of system

2. Software component integration takes a lot of time and effort

• Need for automation to increase engineering productivity

3. Updating system configurations and software components as technology changes is time-consuming

• Need for technology-agnostic abstractions and automation

KEY INGREDIENTS

5

TechFlex addresses the challenge of increasing engineering productivity associated with system diversity and
evolution at the level of the software platform

We propose a model-based approach to specification and deployment with three steps:

1. Technology-agnostic specification of reusable building blocks (abstraction)

2. Technology-specific generation of build, packaging, and deployment artifacts (automation)

3. Synthesis of component compositions and deployment (democratization, automation, optimization)

TECHFLEX APPROACH

Build, package, and deployment chain

Optimized component selection
and deployment

TECHFLEX WORKFLOW

Asset library

Available
Hardware

(Non-)functional
System

Requirements

6

deployment of runnable

Technology-
agnostic DSLs

Generated
artifacts &

deployment
Technology-specific generators

Drives
build chain

7

PRESENTATION OUTLINE

Introduction

Technology-agnostic Specification
and Deployment

Synthesis of Component-based
Systems

Validation

Conclusions

TECHNOLOGY-AGNOSTIC
SPECIFICATION AND

DEPLOYMENT

8

2

Build, package, and deployment chain

Optimized component selection
and deployment

TECHFLEX WORKFLOW

Asset library

Available
Hardware

(Non-)functional
System

Requirements

9

deployment of runnable

Technology-
agnostic DSLs

Generated
artifacts &

deployment
Technology-specific generators

Drives
build chain

?

10

To enable technology-agnostic specification, we started with an analysis using a Software Lifecycle Model

• Distinguishes different phases in the software lifecycle

• Captures all artifacts, e.g. components, interfaces, container images, their relations and technology dependencies

• Structuring software development in this way ensures that changes only propagate downwards through phases

SOFTWARE LIFECYCLE MODEL

Specified

Artifacts:
Specifications of

• Interfaces

• Components

• Modules

• Product instance

Implemented

Artifacts:

• Source files

• Header files

Technology dependency:

• Implementation
language, e.g. Java or
C++

Generated

Artifacts:

• Bundles

• Applications

• Runnable Units

Technology dependency:

• Platform

• Containerization
technology, e.g.
Docker or Podman

Instantiated

Artifacts:

• Deployment files

Technology dependency:

• Orchestration
technology, e.g.
Kubernetes

Implement Generate Deploy

11

We defined a new family of technology-agnostic DSLs to specify elements and relations in all life cycle phases

• Abstract from the identified technology dependencies

• Variants are specified as instances of DSLs minimizing manual intervention

• Used existing Component DSL and added additional DSLs tailored to existing development processes

Create technology-specific generators to automatically create relevant development artifacts

• Automation reduces effort of repetitive tasks

• Technology-specific generators are phased in and out as software technologies evolve

• Address technology changes at the level of the product family instead of the individual variant

TECHNOLOGY-AGNOSTIC SPECIFICATION

Build, packaging, and deployment chain

TECHFLEX DSL WORKFLOW

Asset library

Component DSL

Deployment
DSL

Integration DSL

12

Build
Configuration

DSL

Application
DSL

Runnable Unit
DSL

Celix / Java
bundles

Celix apps. /
fat jars

Container
images

Life-cycle phases

Specified

Implemented

Generated

Instantiated

Drives
build chain

13

SYNTHESIS-BASED ENGINEERING OF SOFTWARE-INTENSIVE SYSTEMS

Traditional
Engineering

Model-Based
Engineering

Verification-Based
Engineering

Synthesis-Based
Engineering

Requirements design

System design

Realization in software
(implementation code)

Verification
(against requirements)

Validation
(of requirements)

Document-based

Document-based

Traditional software
engineering (coding)

Testing

Testing

Document-based

Model-based (formal)

Code generation
(fault-free code)

Testing +
Model-based testing

Testing +
Simulation

Model-based (formal)

Model-based (formal)

Code generation
(fault-free code)

Formal verification
(model checking)

Testing +
Simulation

Model-based (formal)

Computer-aided
(formal, synthesized)

Code generation
(fault-free code)

Correct-by-construction
(guaranteed)

Testing +
Simulation

Manual work / Focus (Semi-)automaticLegend:

Engineering approach →

↓ Development step

(Simplified overview.)

Technology-agnostic
specification and

deployment

SYNTHESIS OF COMPONENT-
BASED SYSTEMS

14

3

Build, packaging, and deployment chain

TECHFLEX DSL WORKFLOW

Asset library

Component DSL

Deployment
DSL

Integration DSL

15

Build
Configuration

DSL

Application
DSL

Runnable Unit
DSL

Celix / Java
bundles

Celix apps. /
fat jars

Container
images

Drives
build chain

16

Is it really necessary to manually specify the composition of components and their deployment?

• Specifying the components to integrate and where to deploy them requires significant effort and expertise

Synthesis automatically configures a system from a repository of reusable components

• Uses models of components and their provided/required capabilities, resource budgets, and non-
functional behavior, as well as optimization criteria

Potential benefits of system synthesis

• Automation increases engineering productivity

• Synthesis democratizes system integration, reducing the dependency on experts

• Design optimization may increase quality/performance while reducing cost

SYNTHESIS OF COMPONENT-BASED SYSTEMS

17

Components are modelled according to the OSGi
capability-requirement model1

• Provided and required interfaces and capabilities

• Provided attributes and required properties of
an interface (like quality)

Resource model considers compute cores and
memory as consumables

BUILDING ON EXISTING WORK

Optimization using Genetic Algorithm2

• Tunable computation/accuracy trade-off

• Provides good results in a few seconds

Proof-of-concept tool developed by Thales and used
as starting point in this project

[1] “Using Requirements and Capabilities” [Online]. Available: https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html

[2] Distributed Evolutionary Algorithms in Python [online], https://github.com/DEAP/deap

Component X

Provided interfaces
with attributes

Required interfaces
with properties

https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://blog.osgi.org/2015/12/using-requirements-and-capabilities.html

18

Introducing modules into component model helps managing the complexity of complex systems

• Allow structured decomposition of system in multiple steps, helping understanding

• Allows specification of provided/required capabilities at higher level than components

• Allows (timing) requirements to be specified before constituent components are known

HIERARCHICAL DECOMPOSITION

MDS
Product

Meal
Delivering

Scheduler Planner

DispatcherPreparerControl

A

X

Y

A

X

Y

B

C

D

<200 ms
A X

Module

Component

Build, packaging, and deployment chain

Synthesis of modules, components, and

hardware deployment

COMPLETE TECHFLEX WORKFLOW

Asset library

Hardware DSLComponent DSL Module DSL

Deployment
DSL

Integration DSL

System
Requirements

DSL

Optimization with Genetic Algorithm

19

Build
Configuration

DSL

Application
DSL

Runnable Unit
DSL

Celix / Java
bundles

Celix apps. /
fat jars

Container
images

Drives
build chain

20

SYNTHESIS-BASED ENGINEERING OF SOFTWARE-INTENSIVE SYSTEMS

Traditional
Engineering

Model-Based
Engineering

Verification-Based
Engineering

Synthesis-Based
Engineering

Requirements design

System design

Realization in software
(implementation code)

Verification
(against requirements)

Validation
(of requirements)

Document-based

Document-based

Traditional software
engineering (coding)

Testing

Testing

Document-based

Model-based (formal)

Code generation
(fault-free code)

Testing +
Model-based testing

Testing +
Simulation

Model-based (formal)

Model-based (formal)

Code generation
(fault-free code)

Formal verification
(model checking)

Testing +
Simulation

Model-based (formal)

Computer-aided
(formal, synthesized)

Code generation
(fault-free code)

Correct-by-construction
(guaranteed)

Testing +
Simulation

Manual work / Focus (Semi-)automaticLegend:

Engineering approach →

↓ Development step

(Simplified overview.)

Technology-agnostic
specification and

deployment

Synthesis of
component-based

systems

VALIDATION

21

4

22

We validate our methodology using an (anonymized) industrial case study from the defense domain comprising

• 70 interface specifications

• 57 component specifications

• 34 module specification

The total instantiated case has a
few hundred elements in it

These must be deployed
on 154 computing nodes

VALIDATION OF METHODOLOGY

GLOBALPLATFORM [1–2]

MENU [1-4]

Meal
Advertisement

Service

Engagement
Detection

Service

Customer
Identification

Service

Platform
Advertisement

Selection
Service

Customer
Retention

Service

Public
Relations
Service

Advertisement
Selection
Service

23

System resolved in < 10 seconds

• Manual resolution would take several weeks

• Up front investment in modelling is required

Multiple technology-agnostic generators

• K8s generators

• Thales specific generators

Need for various visualizations:

• Functional relations

• Structural

• Deployment

RESULTS

Hardware Function
Functional

dependency
Hardware

dependency

CONCLUSIONS

24

5

25

We demonstrated how automated generation and synthesis from models increases engineering productivity
and democratizes engineering on a case study from the defense domain

TechFlex addressed this using a model-based approach to specification and deployment with three steps:

1. Technology-agnostic specification of modules and components as reusable building blocks

2. Technology-specific generation of build, packaging, and deployment artifacts

3. Automatic synthesis of component compositions and deployment based on (non-)functional requirements

CONCLUSIONS

Variability and evolution are key drivers of complexity in high-tech equipment. Every product has many
variation points, resulting in a large number of unique system configurations. These systems must be
maintained throughout the lifetime of the system, which may last several decades. During this time, digital
technologies, e.g., containerization and orchestration technologies, may become deprecated or evolve many
times. Manually configuring, updating, and deploying the software of each product variant, such that both
functional and performance requirements of customers are satisfied, is both expensive and time-consuming.

This presentation describes a synthesis-based approach that aims to increase engineering productivity by
automating the configuration, integration, and deployment of software for product variants, while considering
the performance requirements of critical system flows.

AUTOMATED SYNTHESIS AND DEPLOYMENT OF SOFTWARE INTEGRATIONS

	Introduction
	Slide 1
	Slide 2: Automatic Synthesis and DEPLOYMENT of Component-based software Systems
	Slide 3: Industry challenges
	Slide 4: Key Ingredients
	Slide 5: Techflex Approach
	Slide 6: Techflex workflow
	Slide 7: Presentation outline
	Slide 8: Technology-agnostic specification and deployment
	Slide 9: Techflex workflow
	Slide 10: Software Lifecycle model
	Slide 11: Technology-agnostic Specification
	Slide 12: Techflex DSL Workflow
	Slide 13: Synthesis-Based Engineering of software-intensive systems

	Synthesis
	Slide 14: Synthesis of component-based Systems
	Slide 15: Techflex DSL Workflow
	Slide 16: Synthesis of component-based systems
	Slide 17: Building on existing work
	Slide 18: Hierarchical decomposition
	Slide 19: COMPLETE Techflex Workflow
	Slide 20: Synthesis-Based Engineering of software-intensive systems
	Slide 21: Validation
	Slide 22: Validation of methodology
	Slide 23: Results

	Conclusions
	Slide 24: Conclusions
	Slide 25: Conclusions
	Slide 26

	Abstract
	Slide 27: Automated synthesis and deployment of software integrations

