Type-Safe Requalification

Daniel A. A. Pelsmaeker

Automated code refactorings are very useful to
change the structure or organization of a code base.
ldeally, such refactorings should not change the be-
havior of the program.

But when refactorings change names or move, intro-
duce, or remove code, it is possible that existing ref-
erences in the program break or inadvertently point to
a different declaration than before the transformation.
This would change the behavior of the program.

In this research we show how such references can

be fixed by finding qualifiers that make the reference
resolve to the intended declaration. We call this ap-
proach ‘requalification’. and illustrate it here as part of
a renaming operation.

class A {
static int x
class B {
static int
static int
/[= 3
1
1

Rename y to X

| | | | class A {
Naively renaming the declaration of y in class B static int x = 1
and all its references to be x class B {

changes the behavior of the program.

This is because the lexically closer field x
in class B that shadows the field x in A.

To fix this, we need to ‘requalify’ the references:
finding qualifiers such that the references point to
the intended declarations again.

SAX :int

SA FLD x
LEX

..

static int
static int
/] =
}
}

Requalify references

@ESI

Casper Bach

The program on the left
has a class A with a class B
lexically nested inside.

Class A defines a field X,
class B defines y and z.

In the expression of field z
there are two references:
one to field x in class A, and
one to field y in class B.

We want to rename field v,
to be named X.

LEX LEX CLS A CLS B FLD x
@) @) DD)

CLS B)O FLD x

X
Y
—{

We use the program’s scope graph: a model of the

: . . We know the scope in which the references occur, SBz,
program’s declarations and scoping structure.

and the scopes to which the references should resolve: SAx and SBX,
respectively.

Edges between scopes indicate their relation.
Lexically nested scopes are connected by a LEX
edge, declarations are connected by a named edge
(e.g., CLS A).

We use the scope graph to find all paths from the source SBz
to the target scopes.

class A {
static int x
class B {
static 1int

% ¥
TUDelft static it

For each reference we pick the
path that results in the shortest
qualified reference.

The result is a program with
1 correct references.

}.

