
class A {
 static int x = 1
 class B {
 static int x = 2
 static int z = A.x + x
 // == 3
 }
}

For each reference we pick the
path that results in the shortest
qualified reference.

The result is a program with
correct references.

C
LS

 B

FLD x

LE
X

SA

FLD x

FLD z

LE
X

SB

LEX
SAx : int

LEX
SBx : int

LEX
SBz : int

C
LS

 A

S0

LEX
SBz

LEX
SB

LEX
SA

CLS A
S0 SA

FLD x
SAx

LEX
SBz

LEX
SB SA

FLD x
SAx

A.x

x
SBx

FLD x

LEX
SBz

LEX
SB

LEX
SA

CLS A
S0 SA

CLS B FLD x
SB SBx

LEX
SBz

LEX
SB SA

CLS B FLD x
SB SBx

LEX
SBz SB

FLD x
SBx x

A.B.x

B.x

To fix this, we need to ‘requalify’ the references:
finding qualifiers such that the references point to
the intended declarations again.

Requalify references

We use the program’s scope graph: a model of the
program’s declarations and scoping structure.

Edges between scopes indicate their relation.
Lexically nested scopes are connected by a LEX
edge, declarations are connected by a named edge
(e.g., CLS A).

We know the scope in which the references occur, SBz,
and the scopes to which the references should resolve: SAx and SBx,
respectively.

We use the scope graph to find all paths from the source SBz
to the target scopes.

class A {
 static int x = 1
 class B {
 static int x = 2
 static int z = x + x
 // == 4
 }
}

Naively renaming the declaration of y in class B
and all its references to be x
changes the behavior of the program.

This is because the lexically closer field x
in class B that shadows the field x in A.

We want to rename field y,
to be named x.

Rename y to x

class A {
 static int x = 1
 class B {
 static int y = 2
 static int z = x + y
 // == 3
 }
}

The program on the left
has a class A with a class B
lexically nested inside.

Class A defines a field x,
class B defines y and z.

In the expression of field z
there are two references:
one to field x in class A, and
one to field y in class B.

Automated code refactorings are very useful to
change the structure or organization of a code base.
Ideally, such refactorings should not change the be-
havior of the program.

But when refactorings change names or move, intro-
duce, or remove code, it is possible that existing ref-
erences in the program break or inadvertently point to
a different declaration than before the transformation.
This would change the behavior of the program.

In this research we show how such references can
be fixed by finding qualifiers that make the reference
resolve to the intended declaration. We call this ap-
proach ‘requalification’. and illustrate it here as part of
a renaming operation.

Type-Safe Requalification
Daniel A. A. Pelsmaeker Casper Bach

