Optimal Resource-Constrained Periodic Scheduling

Roel van Os, Marc Geilen, Martijn Hendriks, Twan Basten

Introduction

Periodic scheduling problems have applications in various domains, such as: manufacturing, logistics, embedded computing.

These periodic scheduling problems involve **systems** that process **tasks** that **repeat indefinitely** with a specified period.

Often these systems are constrained by **limited shared resources**.

The goal is to find the **optimal resource allocations** and a **strictly periodic schedule** with a **minimal period**.

Modeling

Resource constraints (easy)

Ensures each task is allocated to a resource.

Complete function allocating all tasks from the set $\,T\,$ to resources from the set $\,R\,$

Precedence constraints (easy)

Ensures the correct task ordering. E.g., for tasks $oldsymbol{z}$ and $oldsymbol{y}$:

$$\sigma(z,k) \geq \sigma(y,k) + e(y,a(y))$$

Task duration on the allocated resource

No-overlap constraints (hard)

Ensures no overlap between tasks on the same resource.

 r_2 r_1 r_2 r_3 r_4 r_5 r_4 r_5 r_5 r_6 r_5 r_6 r_6 r_7 r_8 r_8 r_9 r_9

2

Problem Statement

4

Our Solution

Bounding the repetitions

We proved: If there exists a schedule, there also exists an optimal schedule where for all $t \in T$:

$$\sigma(t,1) \leq (|T| + |R|) \cdot \mu$$

where |T| and |R| represent the number of tasks and resources, respectively.

No-overlap constraints

- ullet Every first task instance is scheduled before $(|T|+|R|)\cdot \mu$
- After the first instance all tasks repeat periodically
- ullet No-overlap satisfaction can be checked with the first |T|+|R| iterations
- Only finitely many constraints

Models

Original Models

Two **Mixed Integer Linear Programming (MILP)** models were created to find the optimal schedule for a given problem instance:

- 1. A monoltithic MILP model using our bounding technique.
- 2. A Benders decomposition applying the Magnanti and Wong Acceleration techniques

Extended State-of-the-Art Models

Two models were created **extending the state-of-the-art** MILP models from Quinton (2020) by applying our bounding technique.

6 E

Experiments

Comparison

We evaluate our models and the extended state-ofthe-art models against the state-of-the-art models by Quinton (2020):

Our Original Models

- 1. Our Monolithic model
- 2. Our Benders decomposition

State-of-the-art models:

- 3. Quinton Monoltihic model
- 4. Quinton Benders decomposition

Our extened state-of-the-art models

- 5. Quinton Bounded Monolithic model
- 6. Quinton Bounded Benders decomposition

Benchmark

A benchmark of **120 problem instances** was created to evaluate the performance of the models. The benchmark consist of **6 subsets of problem instances** with 10-15 tasks and 2-4 resources.

Solution Quality

- Our extended state-of-the-art models improve solution quality.
- Our original models give the overall best solution quality.

Solve Time

- Our models are competitive to the state-of-the-art in solve time.
- In most cases our models also outperform state-of-the-art in solve time.

Reference

Quinton, F., Hamaz, I., Houssin, L., 2020. A mixed integer linear programming modelling for the flexible cyclic jobshop problem. Ann Oper Res 285, 335–352. https://doi.org/10.1007/s10479-019-03387-9