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CHALLENGES AND OPPORTUNITIES 

In big-data era, high-tech companies are encountering opportunities of using the emerging data to 

improve their system life cycle and to define new business cases by transforming themselves into 

service providing companies. Moreover, the massive amount of data generated by the high-tech 

systems also bring the opportunities to deal with the previously unseen challenges, such as the 

significant increase in system complexity, customization, continuous evolution and diversity of 

operational environment. 

Main challenges emerging in “how to benefit from data” concern: 1) the automated extraction of 

relevant data insights (e.g., features and patterns) from a large and diverse amount of data streams, 

and 2) the interpretation of the insights and their integration into the existing system engineering.  

ESI’S CONTRIBUTION 

ESI has both the knowledge and experience of applying data science and system engineering in high-

tech system domain. We are developing a demonstrator to explore and address the challenges of 

bridging these two parties (i.e., data science and high-tech system engineering). Our demonstrator 

sketches out the landscape and integration principles of knowledge-assisted data analysis techniques 

applied to a variety of data streams available within high-tech industry.  

DEMONSTRATOR ON SYSTEM DIAGNOSTICS 

As an industrial showcase, our demonstrator presents semi-automatic identification of the main root 

cause of a factory (system-of-systems) throughput degradation issue through a guided and deep-dive 

analysis to the level of a machine-specific component (a software task). Figure 1 shows the analysis 

flow of our demonstrator, where multiple data science techniques are applied for different data 

streams for identifying the possible root-causes. The detailed explanation of the technologies in the 

demonstrator is given in next section. 

 

Figure 1: The analysis flow of our demonstrator on system diagnostics. 
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DEPLOYED TECHNOLOGIES IN THE SYSTEM DIAGNOSTICS DEMONSTRATOR 

The overall intelligence and added value of the developed demonstrator lies in the integration of 
multiple state-of-the-art data science techniques for analysing data streams at various diagnostics 
levels.  Figure 2 presents a technological overview of the demonstrator. 
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interacting processes
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Figure 2: Technological overview of the demonstrator, where all data analysis techniques can be applied to all 
data sources (light green boxes). However, in the demonstrator, we have selected across combinations (dark 
green boxes) for specific diagnostic challenges. 

The demonstrator is currently built around 5 diagnostic challenges, each of which uses different types 

of data streams and analysis techniques. We note that the demonstrator is work-in-progress and more 

analysis techniques will be added in due time. 

1) System-of-systems data from a production line & process mining. 

A production line usually consists of multiple machines operating in a system-of-systems manner. 

These machines  cooperatively process the same objects, and generate operational data. Process 

mining [1] is employed to analyse the operational data and derive the process flows of objects on 

the production line. The performance bottlenecks (e.g., object distributions across machines 

and/or specific machines) can be identified by analysing the extracted flows (see the screenshot 

of the demonstrator in Figure 3). Given the identified performance bottlenecks, next-step analysis, 

e.g., for specific machines, are recommended. 
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Figure 3: Production line performance bottleneck analysis using process mining.  

2) Machine data & anomaly detection. To diagnose a specific machine issue and narrow down the 

space of causes, we use the operational data generated by the machine components. Basically, 

anomalies are identified based on the operational data. This is achieved using unsupervised 

learning techniques, which are able to detect anomalies without efforts from domain experts. 

These anomalies shown on the screenshot of the demonstrator in Figure 4 are provided by 

32TUYazzoomU32T. 

 
Figure 4: Unsupervised anomaly detection based on machine data. 

3) Machine data & expert system. The detected anomalies are further linked to the system 

engineering knowledge, captured as causal relationships about the components [2] (see the 

screenshot of the demonstrator in Figure 5). The likely root-causes of the machine issue are hence 

obtained according to the causal relationships and the anomalies. This method represents a 

practical application of knowledge-assistant data analysis in industry.  

http://www.machine-analytics.com/tno
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Figure 5: Root-cause analysis guided by the system engineering knowledge. 

4) Fleet data & probabilistic reasoning. The operational data of a fleet of machines further provide 

evidence whether a likely cause identified on one machine also leads to the same issue on other 

machines. To reason about such fleet data and knowledge, probabilistic reasoning [3] is used to 

statistically rank the likely causes and recommend further deep-dive diagnosis of the machine 

component (see the screenshot of the demonstrator in Figure 6). 

 
Figure 6: Probabilistic reasoning based on fleet data. 

5) Machine component data & metric temporal logic. The diagnosis of a machine component relies 

on its operational data, such as the log events. The failures or errors of the component are 

identified by verifying its performance metrics, such as latency or throughput requirements. This 

is achieved using the metric temporal logic (MTL) [4], which formally verifies the performance 

requirements with the log data of the component. If the requirements are not satisfied, failures 

or errors are visualized, with an appropriate recommendation for actions. Note that the 

specification of the requirements is described in a domain-specific language (DSL) that engineers 

can easily understand. The formal language (i.e., the metric temporal logic) backing the analysis is 

invisible to the engineers. 
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Figure 7: Failure/error identification using metric temporal logic analysis of machine component data. 

CONTACT 

For a LIVE DEMO or further information, please feel free to contact Yonghui Li (32Tyonghui.li@tno.nl32T) and 

Emile van Gerwen (32Temile.vangerwen@tno.nl 32T).  
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