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•	 Main problem: estimating 3D pose of multiple humans in 
a social interaction (hard due to occlusions)

•	 Objective: leverage well performing 2D pose detections & 
inter-person correlations to lift 2D-to-3D pose

1. Problem statement

1.	 Novel method for pose lifting a dynamic number of per-
sons in a group interaction across frames to 3D
2.	 Efficient intra- and inter-person modeling with pro-
posed Person Encoding & Permutation Learning
3.	 Improved performance and occlusion handling com-
pared to single-person baselines

2. Contributions

CMU Panoptic Dataset [52]:
1.	 MuPPet handles multi-person scenario better than 
single-person method D3DP 

2.	 Better mean performance and lower variance than 
multi-person competitors 

4. Results

1. Architecture:
•	 Diffusion pipeline with transformer backbone (Fig. 3)

1.	 Conditioning using 2D pose X
•	 Denoise Gaussian noise 3D pose sample YT 

2.	 Temporal & Multi-Person Spatial Attention
•	 Temporal modeling for consistency and counter occlusion
•	 Multi-Person Spatial modeling leverages correlations be-
tween the joints of engaged persons

•	 Person Encoding ensures distinguishability of different 
persons in attention modules

2. Training
•	 Permutation Learning improves data variety while respect-
ing inter-person relations  (Fig. 2)
1.	 Permute the order of persons in interaction
2.	 Subsample & permute the order of  persons in interac-
tion to capture interactions in sub-groups

•	 Training loss: balance absolute & relative pose loss

3. Method

•	 Limitations: optimized specifically for group interaction
•	 Propose a novel 2D-to-3D multi-person pose-lifting method

5. Limitations & Conclusion
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Fig. 1: We exploit social inter-person correlations for 3D pose estimation to help infer unseen, occluded poses and 
spatial relations between individuals. Our method takes a sequence of 2D body poses to predict the sequence of 3D 
poses as shown below.

Fig. 2: Example of permutation augmentation for a five-person scene. We illustrate the people with color 
coding on the left and the permutation in the feature space on the right. From the Original Sample in the 
middle, we show a possible superset permutation on its left, and a possible subset permutation on its right.
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C. Diffusion Process

Following DDPM [45], we employ a diffusion process to
gradually corrupt our multi-person 3D pose Y ∈ RT×P×J×3

by adding Gaussian noise over N time steps, such that
YN becomes nearly pure Gaussian noise. The transformer
architecture described in Section III-A is used as a denoiser
in the reverse diffusion process. The process is defined in
Eq. 1, where ᾱt ∈ [0,1] is a fixed hyperparameter to control
the noising scheme and Y0 = Y :

Yn =
√

ᾱnY0 +
√

1− ᾱnε, ε ∼ N (0, I) (1)

We condition the reverse diffusion process on detected
2D pose X . Following [32], we concatenate X with Yn to
form Zn ∈ RT×P×J×5 at diffusion step n. From every Zn the
denoiser outputs Ỹ0 targeting Y0, following DDIM [50]. With
any n′ < n, Yn′ is constructed by adding noise as shown in
Eq. 2. Then Yn′ is again concatenated with X to construct
Zn′ , which is used in the following denoising step.

Yn′ =
√

ᾱn′ · Ỹ0 +
√

1− ᾱn′ · ε +σnε (2)

Ỹ0 = denoise(concat(X ,Yn)) (3)

At inference, we sample multiple YN conditioning on the
same X , which gives multiple outputs. We then aggregate
these by taking the joint-wise average, to boost performance
as in previous works [32], [48].

D. Pose Loss

We experimentally find that directly outputting absolute
positions of all joints is a difficult task. Therefore, we
normalize poses by separating relative pose and absolute
root location. For the relative pose, each joint is transformed
into a root-relative coordinate system, where the hip-center
serves as the root joint, following standard practice [21],
[51]. The root-relative positions typically fall within [−1,1]
meters, requiring no further normalization. However, the
absolute root joint is normalized based on the training set
as it has a larger range. The single absolute root joint and
remaining relative joints have separate loss terms Labs and
Lrel, respectively. To balance the weight between relative
and absolute joint calculation, we introduce a weight λ to
control the two losses:

LMPJPE = λ ·Labs +(1−λ ) ·Lrel (4)

IV. EXPERIMENTS

A. Experimental Settings

a) Datasets: The Haggling dataset [52] contains 30
recordings with 173 separate sequences inside a capture
system with 31 cameras. Within each recording, three par-
ticipants play a haggling activity for around one minute. It
captures social interaction [51] due to participants having
specific social roles which increases its relevance for our
study. Models evaluated on the Haggling dataset are trained
on 133 sequences, the corresponding test set contains 40
sequences. We use six superset and six subset permutations
due to having only three persons in each scene.

TABLE I: Comparison of MuPPet with single-person lifting method D3DP
on the Haggling dataset, in absolute (MPJPEabs), relative (MPJPErel), and
absolute root MPJPEroot pose estimation in mm. Our MuPPet achieves better
performance than the SOTA single-person pose lifting method D3DP.

Method MPJPErel ↓ MPJPEabs ↓ MPJPEroot ↓
D3DP [32] 58.2 - -
D3DPabsolute [32] 59.1 144.4 135.9
MuPPet 55.3 119.5 108.9

CMU Panoptic [53] is an older dataset than Haggling [52]
and is recorded inside the same capture system. It contains
several social games varying in group size from two to
eight persons with 13 recordings and 58 separate sequences,
significantly less compared to Haggling [52]. Following [19],
[14], [22], we train and evaluate on cameras with the index of
16 and 30. Although there are Haggling, Mafia, Ultimatum,
and Pizza scenes in the dataset, we focus on the first three
of them. Since the Pizza scene is not a group interaction, but
has participants engaged in separated subgroups. The model
evaluated on Panoptic is trained on 38 sequences and tested
on 20 sequences. Due to the low number of training samples,
models tested on Panoptic are pre-trained on Haggling and
finetuned with half the initial learning rate. Due to the small
size of this dataset and having more subjects compared to the
Haggling dataset, we set the permutation to be 13 superset
and three subset permutations.

Implementation Details. We set L = 8 such that the
network contains eight spatio-temporal blocks. The network
is optimized for 400 epochs using AdamW [54] in PyTorch,
with a starting learning rate of 6E-5 and exponential decay of
0.997 per epoch. The maximum timesteps for the diffusion
process are set to 1000, the batch size is four, and we train
on pose sequences of 243 frames following [21]. Training
and inference are run on a single NVIDIA A100 GPU.
For all models, the input 2D pose sequences are obtained
by OpenPose detection [55], and person-id is matched with
ground-truth.

Metrics. Following [51] for the Haggling dataset, and
[19], [16], [14] for the CMU Panoptic dataset, we report
mean per joint positional error (MPJPE) in relative space
and absolute space with mm as a unit. For the absolute joint
error calculation, we take the global origin and calculate the
average joint error relative to the origin. The root error is the
error in absolute space of only the root joint estimation.

B. Comparison of Multi-person and Single-person

To reveal the benefit of correlation learning between
persons, we conduct experiments on the Haggling dataset
due to the rich interactions between people. We pick the
SOTA single-person 3D pose lifting method D3DP [32] as
the baseline in this experiment, which uses diffusion for
human pose lifting, while only processing a single person
individually. We only compare with D3DP since it shows
superior performance compared with the current other single-
person 3D pose lifting methods in the original paper [32].
The original D3DP is trained only on the relative joints, we
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Tab. 1: Comparison of MuPPet with single-person lifting method D3DP on the Haggling dataset, in ab-
solute MPJPEabs, relative MPJPErel, and absolute root MPJPEroot pose estimation in mm. Our MuPPet 
achieves better performance than the SOTA single-person pose lifting method D3DP.

TABLE II: Comparing our method with SOTA Multi-Person pose lifting
(VirtualPose and POTR-3D) and direct estimation methods (MubyNet and
SMAP) on the CMU Panoptic dataset. All numbers are the averaged joint
error in mm. We only list the relative joint error MPJPErel since the absolute
joint error MPJPEabs is not reported by previous pose lifting methods.

Method Haggling Mafia Ultimatum Mean

MubyNet [56] 72.4 78.8 66.8 72.7
SMAP [22] 63.1 60.3 56.6 60.0
VirtualPose [14] 54.1 61.6 54.6 56.8
POTR-3D [19] 60.0 57.0 55.5 57.5

MuPPet 56.1 54.3 57.1 55.8

alter it to predict both relative and absolute joint positions
(D3DPabsolute). Note, we evaluate D3DP with the same
training and test sets as MuPPet for a fair comparison.

In Tab. I, we can see that MuPPet outperforms the D3DP
baseline in both relative and absolute joint position errors,
with significant margins of 6.4% (from 59.1 to 55.3) in the
relative, 17.2% (from 135.9 to 108.9) in the absolute joint
position errors, and 19.9% in the absolute root joint error.
It clearly demonstrates the benefits of leveraging intra- and
inter-person relationships for the 3D pose-lifting task. The
improvement in absolute joint error supports our hypothesis
that modeling multi-person relations gives an improved un-
derstanding of 3D location. We attribute the improvement in
relative joint error to our permutation learning approach used
as data augmentation, which cannot be applied to single-
person methods. Note that the performance improvement of
the absolute joint error is higher than the relative one (17.2%
vs 6.4%), which strongly indicates the benefit of MuPPet in
handling the absolute joint estimation. This is relevant, as the
absolute joint position is more meaningful than the relative
joint position in the multi-person interaction to understand
the group dynamics.

By comparing the original D3DP and our alternation with
absolute joint loss, we can see that adding the absolute joint
loss slightly decreases the relative pose performance. This
suggests that predicting relative and absolute joint positions
jointly is a difficult task.

C. Comparison with SOTA

It is difficult to compare MuPPet with the previous SOTA
methods due to the limited datasets with group interaction,
the availability of source code from previous works, and
the lack of an absolute joint error metric. In this section,
we make an effort to compare MuPPet with the current
SOTA 3D pose estimation method, including 2D-to-3D pose
lifting and direct 3D pose estimation. We use Panoptic in this
experiment as it is popular for the 3D pose lifting task. We
report only the relative joint error due to missing absolute
joint error results. We focus on the Haggling, Mafia, and
Ultimatum scenes in Panoptic, as they fit our target setting
where all people engage in one group activity. Since MuPPet
is a 2D-to-3D multi-person pose lifting method, we mainly
compare it against VirtualPose [14] and POTR-3D [19]. We

also list the performances reported by other SOTA multi-
person direct 3D pose estimation models [22], [56].

The results are shown in Tab. II. We can see from the table
that multi-person 2D-to-3D pose lifting methods, i.e. Virtu-
alPose [14], POTR-3D [19], and our MuPPet, achieve better
performances than direct estimation methods. Among the top
three methods, our MuPPet achieves the best performance in
terms of the averaged relative joint errors across the three
scenes. Note that, although the optimization target of our
method is the absolute joint pose, MuPPet still outperforms
previous SOTA 2D-to-3D methods in the relative joint error.
The superior performance of MuPPet shows the benefit of
leveraging the intra- and inter-person relationships for multi-
person pose estimation.

D. Occlusion study

In social interactions with multi-people, individuals often
occlude each other, making pose estimation challenging.
Unlike the single-person pose estimation method, we assume
that social interactions exhibit coherence between individu-
als, and our method exploits it to improve pose estimation un-
der occlusions. To validate this, we compare our method with
the single-person baseline D3DP on the Haggling dataset,
which has rich interaction among people. We summarize the
results in Fig. 4 with the relative joint error and absolute joint
error computed over different numbers n of occluded joints
per person, where n is the maximum number of occluded
joints for one person.

The figure clearly shows that our method handles oc-
clusion better than D3DP across any number of occluded
joints. The performance gap with D3DP becomes larger as
the number of occluded joints increases, with the effect being
particularly pronounced in the absolute joint error. Since we
focus on improving the absolute joint estimation in multi-
person settings, which are often occluded, the result indicates
the effectiveness of MuPPet.

E. Ablation study

a) Component Ablation: In this section, we examine
the different components of the proposed method and their
effect, using the Haggling dataset. In Tab. III, we show the
performances by gradually adding each component to our
model. The first row in the table is the single-person baseline.
By integrating our multi-person architecture, the absolute
joint performance increased (from 144.4 to 142.1), yet at the
cost of relative joint performance (from 59.1 to 68.4). Adding
person encoding significantly improves the absolute joint
performance to 131.5, while the relative joint performance
gets slightly worse (from 68.4 to 69.1). Combined with
superset permutation learning, absolute joint error decreases
to 126.9, and relative joint estimation performance gets on
par with the single-person baseline (60.0 vs 59.1). Finally,
adding subset permutation learning decreases relative joint
error to 55.3, and also decreases the absolute joint error such
that our final model outperforms its other version by more
than 5.8% (from 126.9 to 119.5).
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Tab. 2: Comparing our method with SOTA Multi-Person pose lifting (VirtualPose and POTR-3D) and 
direct estimation methods (MubyNet and SMAP) on the CMU Panoptic dataset. All numbers are the av-
eraged joint error in mm. We only list the relative joint error MPJPErel since the absolute joint error MP-
JPEabs is not reported by previous pose lifting methods.

Fig. 4: Qualitative results on an in-the-wild setting predicted by MuPPet. We show one frame from the 
video input and the corresponding three views of the predicted 3D pose from multiple persons in the 
scene. Our MuPPet demonstrates effective performance in absolute 3D joint prediction, even on highly 
occluded persons.

Fig. 3: Overview of our MuPPet pipeline. Given a sequence of detected 2D human pose joints from multiple persons X, we use the diffusion process N times to denoise the 3D random poses YN to the output absolute 3D pose Y. Inside the de-
noiser, the spatial transformer and person encoding are applied to capture intra- and inter-person relationships, and a temporal transformer is used to capture the joint relationship across frames.


