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Machine Learning in Industry

Graphics Courtesy Daimler

Autonomous Driving

Industry 4.0, Logistics
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Intelligent Power Management
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Hidden Treasures of Data

Optimize processes, identify anomalies, control Data carries actionable information 

Proliferation of sensors and processing technologies Large amounts of data
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AI-Driven Interpretation and Control
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Why is Machine Learning Promising?

Algo

Model
▌ Traditional model construction 

Engineers build models. 

Use domain knowledge. 

▌ Complex domains ➔ complex models

Expensive development process.

Impossible to understand all relevant aspects. 

▌ Expensive to incorporate changes 

Actionable
Information
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Why is Machine Learning Promising?
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▌ Traditional Machine Learning

Automatically distil a model from data.

Engineers prepare features.

Engineers manage the learning process: Inductive bias, 
representations.

▌ Deep learning

Automatically distil a model from data.

Automated feature extraction ➔ less engineering.

Engineers manage the learning process.
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Challenges in Industrial Applications 

▌ Industry ➔ mission critical applications

The outcomes of ML have a critical impact on the processes.

▌ How do we know a distilled model is adequate?

Naïve black-box testing is increasingly expensive as the modelling 

complexity grows (exponential). 

Continuous learning: is the system evolution OK? 

▌ A successful ML solution from one application is usually 

not suitable for other applications!

Theory: “No free lunch theorem”,  “Ugly duckling theorem”. 
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Way Forward

▌ Scientific advances 

Improved understanding of the ML processes. 

▌ ML-compatible engineering processes 

The engineering processes must be based on sound mathematical principles. 

▌ Competences: training engineers in ML basics

Understand the Math behind ML ➔ avoid pitfalls, maximise the benefits.
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Summary

▌ ML is a critical enabler of advanced industrial solutions

John van den Dobbelsteen: Computer assisted process management in the operating room

▌ ML introduces new engineering challenges ➔ adapt engineering processes

Michael Borth: Here There Be Dragons
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