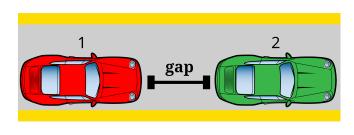


STARK: Software Tool for the Analysis of Robustness in the unKnown environment


Sebastián Betancourt¹, Valentina Castiglioni¹, Michele Loreti², Simone Tini³
[1] Eindhoven University of Technology [2] University of Camerino [3] University of Insubria

STARK checks safe and correct behaviour of Cyber-Physical Systems under uncertainty.

- **A** Unreliable sensors/actuators/env ⇒ State as a distribution
- **☆** Computation + physics ⇒ Agent–environment loop
- **⊘** Correctness ⇒ Verify with **DisTL**
- **■** Robustness against perturbations ⇒ Check with RobTL

Example: Car with unreliable components

$$\begin{split} \text{Agent} &\stackrel{\text{def}}{=} \text{if [gap} < 50] \text{ (FASTER} \rightarrow \text{command).Agent} \qquad \text{(Car 1)} \\ & \text{else if [gap} > 50] \text{ (SLOWER} \rightarrow \text{command).Agent} \\ & \text{else (FASTER} \rightarrow \text{command} \mid \mid_{0.5} \text{SLOWER} \rightarrow \text{command).Agent} \\ & \text{Env} &\stackrel{\text{def}}{=} \{ \text{ if command} = \text{FASTER then al} \sim U[0, a_{\text{max}}] \\ & \text{else if command} = \text{SLOWER then al} \sim -U[b_{\text{min}}, b_{\text{max}}]; \\ & \text{v2} \sim U[0, \nu_{\text{max}}]; \\ & \dots \quad \text{(Classical 1D kinematics)} \end{split}$$

Does the red car maintain the safety gap correctly?

- Expected behaviour $\mu = \text{gap} \sim N(50, 0.2)$
- Penalty function ρ and tolerance $\varepsilon \in [-1,1]$

DisTL formula $\varphi = \Box^{[0,100]}$ target $(\mu)_s^{\rho}$

Is the system robust against a sensor perturbation?

• Sensor perturbation: $p = (f@2)^{20}$ applies f every 2 steps, 5 times, where f(ds) = ds' and

$$ds'(\text{gap}) = \begin{cases} ds(\text{gap}) + \Delta, & \text{with probability 0.5, } \Delta \sim U([-10, 10]), \\ ds(\text{gap}), & \text{otherwise.} \end{cases}$$

- ${
 m M_{crash}}={
 m G}^{[0,100]}<
 ho_{{
 m crash}}$ measures the maximum probability of a collision to occur in [0,100], where ${
 m
 ho_{crash}}(ds)=egin{cases} 1 & {
 m if}\ ds({
 m gap})\leq 0 \\ 0 & {
 m otherwise} \end{cases}$
- RobTL formula: Robustness against sensor perturbation

$$\psi = \Delta(M_{crash}, p_{dd}) \le 0.1$$

Other case studies

- Simple physics: Three tanks experiment
- Robustness vs cyber-attacks: Overstress of an engine
- Effective digital twins:
 - Robots in industrial plant
 - · Robots in smart hospital
- Systems Biology:
 - Gene regulatory networks
 - Biochemical networks
- Social networks: DeGroot learning
- Games:
 Polistil electric track