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In-house libraries are used at many places for many purposes
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Demand for methods that enable the high-tech industry to
• Replace in-house libraries by other (off-the-shelf) technologies

• Enhance insight in the use of in-house libraries
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Speed-up maintenance and development on legacy code bases
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Mutually reinforcing demands

Enhance insight
• Dominant activity in many areas of software engineering

• Supports not only maintenance, but also regular development

• Global overview models instead of local code fragments

• Beyond textual search and cross-reference databases

• E.g., data flow analysis for domain-specific code fragments in their context

Reduce
complexity

Enhance 
insight

“Even experienced developers 
spend a lot of time on analysis”
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Semi-automated model extraction/inference techniques

Artifacts

• Code
• Models
• Build scripts
• Documentation

Executable system

• Real system
• Digital twin

Execution logs

• Logging
• Tracing
• Sniffing

Model of structure
(component, system)

• UML Structure diagrams
• (Annotated) Parse trees
• Control flow graphs

Model of functionality
(component, interface)

• UML Behavior diagrams
• (Timed) State machines
• Business logic

Passive learning

Active learning

Build

Run

Static analysis

Focus of this presentation

Later in this session
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Method for analyzing in-house libraries
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Toolkit with generic 
automated analysis tools

Overview of the library 
use in the code base

Develop a custom 
automated analysis tool
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Method 

Run the custom 
automated analysis tool

Develop

Apply

Explore the library use in 
the code base

The variation in patterns 
is usually limited

• MSBuild
• Eclipse CDT
• LibAdaLang
• Renaissance (ESI)
• Etc.

Typical code patterns for 
library use
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Enhanced insight in the use of in-house libraries
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➔ Experiment with various representations to gain insight in large code bases

yEd
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Library elements used in 
deviating code fragments

Develop a custom 
automated analysis tool

Reduce code pattern 
variation in the code base
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Method

Run the custom 
automated analysis tool

Improve the library use in 
the code base

Develop

Apply

Explore the library use in 
the code base

Toolkit with generic 
automated analysis tools

Overview of the library 
use in the code base

Typical code patterns for 
library use

Relevant library elements

Check for 
completeness

Domain-specific aspects:
• Unused code
• Inconsistencies

Act
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Method for enhanced insight in the use of in-house libraries
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Model-based method based on static code analysis
• Semi-automated approach

• Machine: Perform repetitive tasks in a structured way

• Human: Steer and customize the process in a creative way

• Incremental, iterative approach
• Common code patterns in a small subset of the code base

• More exceptional code patterns, and larger subsets of the code base

Benefits of the extracted custom models
• Enhanced insight using global overviews that are difficult to see in the code base

• Typically reveal immediate improvement opportunities
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