
Enhanced insight in the use of in-house 
libraries using static code analysis

Arjan Mooij (Arjan.Mooij@tno.nl)

IDEW’21 Session on “Managing your legacy”, 13th April 2021



© ESI (TNO) 2021

In-house libraries are used at many places for many purposes

13-04-2021 Enhanced insight in the use of in-house libraries using static code analysis2

Demand for methods that enable the high-tech industry to
• Replace in-house libraries by other (off-the-shelf) technologies

• Enhance insight in the use of in-house libraries

Structured 
logging

Domain-specific 
functionality

Blackboard 
communication

Component 
interaction



© ESI (TNO) 2021

Speed-up maintenance and development on legacy code bases

13-04-2021 Enhanced insight in the use of in-house libraries using static code analysis3

Mutually reinforcing demands

Enhance insight
• Dominant activity in many areas of software engineering

• Supports not only maintenance, but also regular development

• Global overview models instead of local code fragments

• Beyond textual search and cross-reference databases

• E.g., data flow analysis for domain-specific code fragments in their context

Reduce
complexity

Enhance 
insight

“Even experienced developers 
spend a lot of time on analysis”



© ESI (TNO) 202113-04-2021 Enhanced insight in the use of in-house libraries using static code analysis4

Semi-automated model extraction/inference techniques

Artifacts

• Code
• Models
• Build scripts
• Documentation

Executable system

• Real system
• Digital twin

Execution logs

• Logging
• Tracing
• Sniffing

Model of structure
(component, system)

• UML Structure diagrams
• (Annotated) Parse trees
• Control flow graphs

Model of functionality
(component, interface)

• UML Behavior diagrams
• (Timed) State machines
• Business logic

Passive learning

Active learning

Build

Run

Static analysis

Focus of this presentation

Later in this session



© ESI (TNO) 2021

Method for analyzing in-house libraries

13-04-2021 Enhanced insight in the use of in-house libraries using static code analysis5



© ESI (TNO) 2021

Toolkit with generic 
automated analysis tools

Overview of the library 
use in the code base

Develop a custom 
automated analysis tool

13-04-2021 Enhanced insight in the use of in-house libraries using static code analysis6

Method 

Run the custom 
automated analysis tool

Develop

Apply

Explore the library use in 
the code base

The variation in patterns 
is usually limited

• MSBuild
• Eclipse CDT
• LibAdaLang
• Renaissance (ESI)
• Etc.

Typical code patterns for 
library use



© ESI (TNO) 2021

Enhanced insight in the use of in-house libraries

13-04-2021 Enhanced insight in the use of in-house libraries using static code analysis7

➔ Experiment with various representations to gain insight in large code bases

yEd



© ESI (TNO) 2021

Library elements used in 
deviating code fragments

Develop a custom 
automated analysis tool

Reduce code pattern 
variation in the code base

13-04-2021 Enhanced insight in the use of in-house libraries using static code analysis8

Method

Run the custom 
automated analysis tool

Improve the library use in 
the code base

Develop

Apply

Explore the library use in 
the code base

Toolkit with generic 
automated analysis tools

Overview of the library 
use in the code base

Typical code patterns for 
library use

Relevant library elements

Check for 
completeness

Domain-specific aspects:
• Unused code
• Inconsistencies

Act



© ESI (TNO) 2021

Method for enhanced insight in the use of in-house libraries

13-04-2021 Enhanced insight in the use of in-house libraries using static code analysis9

Model-based method based on static code analysis
• Semi-automated approach

• Machine: Perform repetitive tasks in a structured way

• Human: Steer and customize the process in a creative way

• Incremental, iterative approach
• Common code patterns in a small subset of the code base

• More exceptional code patterns, and larger subsets of the code base

Benefits of the extracted custom models
• Enhanced insight using global overviews that are difficult to see in the code base

• Typically reveal immediate improvement opportunities

Acknowledgements
This research was carried out as part of the Vivace program under the responsibility of ESI (TNO) with Royal Philips as carrying 
industrial partner. The Vivace program is supported by the Netherlands Organisation for Applied Scientific Research TNO.


