
Program Analysis and AI for
Legacy Code Modernisation

Dr. Alok Lele and Dr. Lina Ochoa
ASML, TU/e

Eindhoven, The Netherlands

October 7, 2025

ESI Symposium

Why are we here?

Page 2

ASML In the News
2020 → 2023

3

Complexity of a Twinscan (NXE) System

Has more than 100,000 individual

parts, 3,000 cables, 40,000 bolts

and 2 km of hosing

Has about 1,500

sensors to

capture imaging

data

Took 20 years

of sustained

R&D to develop

Generates about

4.5 TB of data

per day

Page 4

Increasing complexity in developing scanner software

Month Day, Year Page 5

0

10

20

30

40

50

60

70

80

XT

NXT

NXE

EXE

Machine

Platform

Machine

Types
Variants

System

Enhancements

EXE
EXE:5000 1 6

EXE:5200 1 2

NXE

NXE:3350 1 4

NXE:3400 2 24

NXE:3600 1 13

NXE:3800 1 8

NXT

NXT:1470 1 27

NXT:19xx 7 295

NXT:2xxx 4 108

NXT:8xx 2 71

XT

XT:1000 2 92

XT:1060 1 50

XT:1250 2 64

XT:14xx 6 217

XT:4xx 10 328

XT:8XX 13 1340

M
a

c
h

in
e

P

la
tf

o
rm

s
S

c
a

n
n

e
r

L
o

C

Start of platform specific coding

Theory vs. Reality of Code Modernization
Technical Complexity Is Just One Aspect of Cost of Change

Page 6

+ Organization complexity
+ Development complexity
+ Business complexity

Theory vs. Reality of Code Modernization
Technical Complexity Is Just One Aspect of Cost of Change

Page 7

Software maintenance

New business opportunities

Business sustenance
(e.g., EoL migration,

reorganization)

Competence gap

The AI Belief

Generative AI demonstrates remarkable capability in understanding

context, being flexible at applying complex tasks, and generating

comprehensible outputs at scale.

Page 8

But can they be trusted?

Early exploration

Page 9

It’s a Team Efforts

Month Day, Year Page 10

Thijs Bressers Hamza Meddeb Erdem Alici Edwin Roos

Jamel Fehri Jacco Steegman Sandeep Patil Mahsa ChitsazLeonardos Pastinakas

Early Exploration
Using AI to rework coding violations

Page 11

Code Review

Quality Checks

Develop

Integrate

Rework

Human code

reviews

Quality Checks

Develop

Integrate

Rework

Fixing code
smells with AI

Recurring fault-slip-

through

~5% of total

implementation time

Visualizing the output

Page 12

Results

Language # Rules # Violations # Fixed violations Success rate

TICS Python 13 257 241 ~94%

C/C++ 10 458 368 ~80%

AMX Python/C/C++ 8 1,075 1,037 ~96%

Page 13

*fixed = correct syntax + original violation fixed + no new violation introduced.

Takeaway 1: When AI works, it works well.

Results

Total

rules

Rules

addressed

Violations # Fixed violations Success

rate

TICS 81 23 2,869 609 ~21%

AMX 18 8 2,354 1,037 ~44%

Page 14

*fixed = correct syntax + original violation fixed + no new violation introduced.

Takeaway 2: AI does not work in many places (yet).

Where Things Start to Get Difficult
Example: Reducing Cyclomatic Complexity via Extract Method

Page 15

Example taken from: Hora, Andre & Robbes, Romain. (2020). Characteristics of method extractions in Java: a large scale empirical study. Empirical Software
Engineering. 25. 10.1007/s10664-020-09809-8.

Let’s do some research…

Page 16

Research Team

Prof. Mark van den Brand Dr. Joao Godinho Ribeiro Dr. Jelle Piepenbrock Prof. Mykola Pechenizkiy

Month Day, Year Page 17

Research Team
Static vs. LLM Approaches to Automatic Code Refactoring

Jeffrey Lint Arturs Remesis

Month Day, Year Page 18

The Research Question

To what extent do LLM approaches compare to static ones

when extracting methods in a large production codebase?

Page 19

What did we do?

Page 20

Study Design

Page 21

A

C

B

Components Datasets

Datasets

pre post

ground truth

Study Design

Page 22

A

C

B

Components Datasets

Datasets

smelly

current version

pre post

ground truth

Study Design

Page 23

A

C

B

pre post

smelly

Components Datasets Refactoring Identification

LLM (GitHub Copilot)

Refactoring Application

Approaches

Static (rope)

LLM (GitHub Copilot)

Static (J’Hubert)

Study Design
Evaluation

Similarity • CodeBLEU

Quality
• CC

• LLOCs

• SLOCs

Correctness
• Failed applications

• Build errors

• Failed tests

Page 24

What results we got?

Page 25

Correctness

Identification Application Failed applications Build errors Executed tests Failed test

LLM LLM 1 7 1,061 113 (10.7%)

LLM Static 40 0 955 51 (5.3%)

Static LLM 1 3 1,061 157 (14.8%)

Static Static 8 0 1,010 65 (6.4%)

Worst case - - 1,061 420 (39.6%)

Page 26

Current Version Component A

Takeaway 1: LLMs are more flexible during application, while static
approaches account for syntactic and semantic correctness.

Quality
Cyclomatic Complexity (CC) in Current Version Component A

Page 27

Quality
Cyclomatic Complexity (CC) in Current Version Component A

Page 28

Takeaway 2: Static identification yields less complex
functions.

Quality
Cyclomatic Complexity (CC) in Ground Truth

Page 29

Manual

Quality
Cyclomatic Complexity (CC) in Ground Truth

Page 30

Manual

Takeaway 3: …but even less complex with a manual
approach.

Similarity
CodeBLEU in Ground Truth

Page 31

Manual

Similarity
CodeBLEU in Ground Truth

Page 32

Manual

Takeaway 4: Static and LLM applications result into
refactored code similar to that manually created.

What did we learn?

Page 33

The AI Reality

Generative AI demonstrates notorious capability in

understanding context, being flexible at applying complex

tasks, and generating comprehensible outputs at scale.

Page 34

Observation: Unconstrained AI generation produces

inconsistent outputs, introduces bugs, and lacks the

rigorous guarantees required for production systems.

Summary

• Maintaining large scale legacy software systems is increasingly

complex.

• The key appeal of LLMs is their ability to produce human

comprehensible output.

• Establishing trustworthiness of probabilistic solution requires

further innovation of the technology but also in its application.

Month Day, Year 35

Thanks! Dr. Alok Lele

alok.lele@asml.com

Eindhoven, The Netherlands

Dr. Lina Ochoa

l.m.ochoa.venegas@tue.nl

Open to Work!

Jeffrey Lint

j.a.h.lint@student.tue.nl

Program Analysis and AI for

Legacy Code Modernisation

	Slide 1: Program Analysis and AI for Legacy Code Modernisation
	Slide 2: Why are we here?
	Slide 3: ASML In the News
	Slide 4: Complexity of a Twinscan (NXE) System
	Slide 5: Increasing complexity in developing scanner software
	Slide 6: Theory vs. Reality of Code Modernization
	Slide 7: Theory vs. Reality of Code Modernization
	Slide 8: The AI Belief
	Slide 9: Early exploration
	Slide 10: It’s a Team Efforts
	Slide 11: Early Exploration
	Slide 12: Visualizing the output
	Slide 13: Results
	Slide 14: Results
	Slide 15: Where Things Start to Get Difficult
	Slide 16: Let’s do some research…
	Slide 17: Research Team
	Slide 18: Research Team
	Slide 19: The Research Question
	Slide 20: What did we do?
	Slide 21: Study Design
	Slide 22: Study Design
	Slide 23: Study Design
	Slide 24: Study Design
	Slide 25: What results we got?
	Slide 26: Correctness
	Slide 27: Quality
	Slide 28: Quality
	Slide 29: Quality
	Slide 30: Quality
	Slide 31: Similarity
	Slide 32: Similarity
	Slide 33: What did we learn?
	Slide 34: The AI Reality
	Slide 35: Summary
	Slide 36

