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Why are we here?
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ASML In the News
2020 → 2023
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Complexity of a Twinscan (NXE) System

Has more than 100,000 individual 

parts, 3,000 cables, 40,000 bolts 

and 2 km of hosing

Has about 1,500 

sensors to 

capture imaging 

data

Took 20 years 

of sustained 

R&D to develop

Generates about 

4.5 TB of data 

per day
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Increasing complexity in developing scanner software

Month Day, Year Page 5
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Start of platform specific coding



Theory vs. Reality of Code Modernization
Technical Complexity Is Just One Aspect of Cost of Change
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+ Organization complexity
+ Development complexity
+ Business complexity



Theory vs. Reality of Code Modernization
Technical Complexity Is Just One Aspect of Cost of Change
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Software maintenance

New business opportunities

Business sustenance
(e.g., EoL migration, 

reorganization)

Competence gap



The AI Belief

Generative AI demonstrates remarkable capability in understanding 

context, being flexible at applying complex tasks, and generating 

comprehensible outputs at scale.
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But can they be trusted?



Early exploration
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It’s a Team Efforts
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Thijs Bressers Hamza Meddeb Erdem Alici Edwin Roos

Jamel Fehri Jacco Steegman Sandeep Patil Mahsa ChitsazLeonardos Pastinakas



Early Exploration
Using AI to rework coding violations
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Code Review

Quality Checks

Develop

Integrate

Rework

Human code 

reviews

Quality Checks

Develop

Integrate

Rework

Fixing code 
smells with AI

Recurring fault-slip-

through

~5% of total 

implementation time



Visualizing the output
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Results

Language # Rules # Violations # Fixed violations Success rate

TICS Python 13 257 241 ~94%

C/C++ 10 458 368 ~80%

AMX Python/C/C++ 8 1,075 1,037 ~96%
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*fixed = correct syntax + original violation fixed + no new violation introduced. 

Takeaway 1: When AI works, it works well.



Results

# Total 

rules

# Rules 

addressed

# Violations # Fixed violations Success 

rate

TICS 81 23 2,869 609 ~21%

AMX 18 8 2,354 1,037 ~44%
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*fixed = correct syntax + original violation fixed + no new violation introduced. 

Takeaway 2: AI does not work in many places (yet).



Where Things Start to Get Difficult
Example: Reducing Cyclomatic Complexity via Extract Method
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Example taken from: Hora, Andre & Robbes, Romain. (2020). Characteristics of method extractions in Java: a large scale empirical study. Empirical Software 
Engineering. 25. 10.1007/s10664-020-09809-8. 



Let’s do some research…
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Research Team

Prof. Mark van den Brand Dr. Joao Godinho Ribeiro Dr. Jelle Piepenbrock Prof. Mykola Pechenizkiy
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Research Team
Static vs. LLM Approaches to Automatic Code Refactoring

Jeffrey Lint Arturs Remesis
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The Research Question

To what extent do LLM approaches compare to static ones 

when extracting methods in a large production codebase?
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What did we do?
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Study Design
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A

C

B

Components Datasets

Datasets

pre post

ground truth



Study Design
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A

C

B

Components Datasets

Datasets

smelly

current version

pre post

ground truth



Study Design
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A

C

B

pre post

smelly

Components Datasets Refactoring Identification

LLM (GitHub Copilot)

Refactoring Application

Approaches

Static (rope)

LLM (GitHub Copilot)

Static (J’Hubert)



Study Design
Evaluation

Similarity • CodeBLEU

Quality
• CC

• LLOCs

• SLOCs

Correctness
• Failed applications

• Build errors

• Failed tests
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What results we got?
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Correctness

Identification Application Failed applications Build errors Executed tests Failed test

LLM LLM 1 7 1,061 113 (10.7%)

LLM Static 40 0 955 51 (5.3%)

Static LLM 1 3 1,061 157 (14.8%)

Static Static 8 0 1,010 65 (6.4%)

Worst case - - 1,061 420 (39.6%)
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Current Version Component A

Takeaway 1: LLMs are more flexible during application, while static 
approaches account for syntactic and semantic correctness.



Quality
Cyclomatic Complexity (CC) in Current Version Component A
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Quality
Cyclomatic Complexity (CC) in Current Version Component A

Page 28

Takeaway 2: Static identification yields less complex 
functions. 



Quality
Cyclomatic Complexity (CC) in Ground Truth
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Manual



Quality
Cyclomatic Complexity (CC) in Ground Truth
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Manual

Takeaway 3: …but even less complex with a manual 
approach.



Similarity
CodeBLEU in Ground Truth
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Manual



Similarity
CodeBLEU in Ground Truth
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Manual

Takeaway 4: Static and LLM applications result into 
refactored code similar to that manually created.



What did we learn?
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The AI Reality

Generative AI demonstrates notorious capability in 

understanding context, being flexible at applying complex 

tasks, and generating comprehensible outputs at scale.
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Observation: Unconstrained AI generation produces 

inconsistent outputs, introduces bugs, and lacks the 

rigorous guarantees required for production systems.



Summary

• Maintaining large scale legacy software systems is increasingly 

complex.

• The key appeal of LLMs is their ability to produce human 

comprehensible output.

• Establishing trustworthiness of probabilistic solution requires 

further innovation of the technology but also in its application.
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Thanks! Dr. Alok Lele

alok.lele@asml.com

Eindhoven, The Netherlands

Dr. Lina Ochoa

l.m.ochoa.venegas@tue.nl

Open to Work!

Jeffrey Lint

j.a.h.lint@student.tue.nl

Program Analysis and AI for 

Legacy Code Modernisation
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