TU/e ASML

Program Analysis and Al for
Legacy Code Modernisation

Dr. Alok Lele and Dr. Lina Ochoa
ASML, TU/e

ESI Symposium
Eindhoven, The Netherlands
October 7, 2025

ASML In the News ,
2020 > 2023 How ASML became Europe’s most

valuable tech firm

® 21 February

EB o Signin Home News Sport Reel Worklife Traw

NEWS

Home Coronavirus | Video World UK Business Tech Science | Stories Entertainment & Arts = Health

Tech

Apple iPhone 12: The chip advance
set to make smartphones smarter

By Leo Kelion
Technology desk editor

13 October 2020

When Apple unveils its new iPhones, expect it to make a big deal of the fact ot
they're the first handsets in the world to be powered by a new type of chip. | We take that back e t a e t a t a ‘

The "five nanometre process" involved refers to the fact that the chip's
transistors have been shrunk down - the tiny on-off switches are now only
about 25 atoms wide - allowing billions more to be packed in.

Effectively It means more brain power.

Travel back just four years, and many industry insiders doubted the advance

That it has been, is in large part down to the ingenuity of a relatively obscure
<] Dutch company - ASML.

But it's currently the only company making them. And they are still more cost-
effective than alternative options, in part because of a low defect rate.

ASML TU/e 3

Confidential

Complexity of a Twinscan (NXE) System

Has more than 100,000 individual

parts, 3,000 cables, 40,000 bolts
and 2 km of hosing

ASML TU/e

Took 20 years
of sustained
R&D to develop

Has about 1,500
sensors to
capture imaging
data

Generates about
4.5 TB of data
per day

Page 4
Confidential

Increasing complexity in developing scanner software

80

Machine Machine Variants System
70 Platform Types Enhancements
EXE:5000 1 6
o % EXE —ExE:5200 1 2
9 % NXE:3350 1 4
o) NXE:3400 2 24
e 40 NXE NXE:3600 1 13
S NXE:3800 1 8
n
NXT:1470 1 27
20 NXT:19xx 7 295
o NXT NXT:2xxx 4 108
NXT:8xx 2 71
0 XT:1000 2 92
S S T s s T s s S s S X050 . >
o 2 AV X7 XT:14xx 6 217
£5 I NXT) XT:4xx 10 328
% | NXE > XT:8XX 13 1340
=0

Start of platform specific coding

ASML TI\UAGay, Year Page 5

Confidential

Theory vs. Reality of Code Modernization
Technical Complexity Is Just One Aspect of Cost of Change

Customer Responsiveness

+ Organization complexity
_--——+ Development complexity

, /" + Business complexity

/
/

actual CoC ."
technical debt

Cost of Change (CoC)

optimal CoC

ASML TU/e Page 6

Confidential

Theory vs. Reality of Code Modernization
Technical Complexity Is Just One Aspect of Cost of Change

New business opportunities

Business sustenance
(e.g., EoL migration,
reorganization)

Software maintenance

Competence gap

ASML TU/e Page 7

Confidential

The Al Belief

Generative Al demonstrates remarkable capability in understanding
context, being flexible at applying complex tasks, and generating
comprehensible outputs at scale.

But can they be trusted?

ASML TU/e

Confidential

It’s a Team Efforts

Thijs Bressers Hamza Meddeb Erdem Alici Edwin Roos

Jamel Fehri Jacco Steegman Leonardos Pastinakas Sandeep Patil Mahsa Chitsaz
ASML TI\U[Gay, Year Page 10

Confidential

Early Exploration
Using Al to rework coding violations

~5% of total

implementation time Develop Develop
Rework Quality Checks — Quality Checks
\ 1 I 1
Code Review “~__ Humancode

reviews

Recurring fault-slip- l l
through
Integrate Integrate

ASML TU/e

Fixing code
smells with Al

Page 11

Confidential

Visualizing the output

z sanpatil 11 hours ago

This suggestion is from Al and should be carefully reviewed.
Coding Standard Violation: W0612
Line 514: Unused variable ‘unused_var"

link: http://pylint-messages.wikidot.com/messages/w.0612

Suggested change

514
514
95
516

ASML TU/e

+

-+

unused_var = 'unused_var'
if not os.path.exists(RECIPE_DIR):
os.mdkir(RECIPE_DIR)
self._logger_print('Recipe directory " + RECIPE_DIR + " was not
found. The directory is

recreated.")

Commit suggestion ~ Add suggestion to batch

Confidential

Results

Language # Rules # Violations # Fixed violations Success rate

TICS Python 13 257 241 ~94%
C/C++ 10 458 368 ~80%

AMX Python/C/C++ 8 1,075 1,037 ~96%

*fixed = correct syntax + original violation fixed + no new violation introduced.

Takeaway 1: When Al works, it works well.

ASML TU/e

Page 13

Confidential

Results

Total # Rules # Violations # Fixed violations Success
rules addressed rate
TICS 81 23 2,869 609 ~21%
AMX 18 8 2,354 1,037 ~44%,

*fixed = correct syntax + original violation fixed + no new violation introduced.

Takeaway 2: Al does not work in many places (yet).

ASML TU/e Page 14

Confidential

Where Things Start to Get Difficult

Example: Reducing Cyclomatic Complexity via

version 1

public void run() {
//omitted code

boolean updatablePlatforms
BaseNoGui.getPackages().stream();

boolean updatableLibraries =
BaseNoGui.getLibragies().stream();

- L)

//omitted code

ASML TU/e

Extract Method

version 2

public void run() {
J/omitted code

boolean updatablePlatforms
checkForUpdatablePlatforms();

boolean updatablelLibraries =
checkForUpdatableLibraries();

J/omitted code
}

static boolean checkForUpdatablePlatforms() {
> return BaseNoGui.getPackages().stream();
}

static boolean checkForUpdatableLibraries() {
return BaseNoGui.getLibraries().stream();

Let’s do some research...

ASML

Research Team

Prof. Mark van den Brand Dr. Joao Godinho Ribeiro Dr. Jelle Piepenbrock Prof. Mykola Pechenizkiy

ASML TU/e

Confidential

Research Team
Static vs. LLM Approaches to Automatic Code Refactoring

Jeffrey Lint Arturs Remesis

ASML TU/e

Confidential

The Research Question

To what extent do LLM approaches compare to static ones
when extracting methods in a large production codebase?

ASML TU/e

Confidential

Page 20

Study Design

Datasets

Components

ASML TU/e

ground truth

Datasets

PYREF: Refactoring Detection in Python Projects

Hassan Atwi*, Bin Lin*, Nikolaos Tsantalis’, Yutaro Kashiwat
Yasutaka Kameif, Naoyasu U'hayashit, Gabriele Bavota®, Michele Lanza*
*Software Institute — USI, Lugano, Swirzerland — 1Concordia University, Canada — Kyushu University, Japan

Abstract—Refactoring, the process of improving the internal
code structure of a software system without altering its external
hehavior, is widely applied during software development. Un-
der ding how developers refactor source code can help gain
better understanding of the software development process and
the relationship between various versions of a system. Refactoring
detection tools have been developed for many popular program-
ming languages, such as Java {e.g., REFACTORINGMINER and
REF-FINDER) but, quite surprisingly, this is not the case for
Python, a widely used programming language.

Inspired by REFACTORING MINER, we present PYREF, a tool
that ically detects method-level refactoring operations in
Python projects. We evaluated PYREF apainst a manually built
oracle and compared it with a PYTHON-ADAPTED REFACTOR-
INGMINER, which converts Python program to Java and detects
refactoring operations with REFACTORING MINER. Our results
indicate that PYREF can achieve satisfactory precision and detect
more refactorings than the current state-of-the-art.

Index Terms—refactoring detection, Python, software mainte-
nance

I. INTRODUCTION

Refactoring, the process of improving the internal structure
of a software system without changing its external behavior
[1], has received significant attention by the software engi-
neering research community. Understanding how refactoring
is applied in software systems can help to gain insights into
software maintenance and evolution, learning good software
design practices and improve code comprehension. However,
detecting refactoring is not a trivial task due to the lact
that developers rarely document the refactoring operations
they perform [2]. Besides, refactoring operations are oflen
performed together with —or as a o | e of— other

Therefore, detecting refactoring in Python can allow to gain
specific insights in these domains.

Dilhara and Dig [9] have taken the first step to address
this issue and developed PYTHON-ADAPTED REFACTORING-
MiNER?, which converts Python programs into Java and uses
REFACTORINGMINER [4] to detect refactorings. However,
there are considerable differences between these two lan-
guages, let alone the language grammar. For example, Python
checks types at runtime while Java is a statically typed
language. Moreover, Java is class-hased and ohject-oriented,
while Python projects can also follow other programming
styles such as functional and imperative programming.

Inspired by REFACTORINGMINER [4], we present PYREF,
a tool that automatically detects mainly method-level refac-
toring operations from Python projects. To evaluate the per-
formance of PYREF, we ran it on three real-world Python
projects, and manually validated the refactoring detection. We
also compared PYREF with the only publicly available refac-
toring detection tool for Python, namely PYTHON-ADAPTED
REFACTORING MINER. On average, PYREF achieves a preci-
sion of 89.6% and a recall of 76.1%, which are both higher
than the current state-of-the-art. This results show the potential
of PYREF for refactoring detection in Python projects.

The remainder of the paper is structured as follows. Sec-
tion II introduces current refactoring detection tools. The
detailed techniques behind PYREF are described in Section ITL
Section IV reports the design and results of the study we per-
formed to assess the performance of PYREF. The limitations
of our tool are discussed in Section V. Finally, Section VI
concludes the paper.

Study Design

Datasets
current version

Y TIOBE Quality Indicator
v {4 Splint

— Higher Quality

Lower Quality
B TQI Score 77.64%

g rou nd truth Code Coverage 79.07%

C
/\ Abstract Interpretation 94.55% A
v Cyclomatic Complexity 4500% E
C
B

Compiler Warnings 79.23%

Coding Standards 82.28%

O
'
Il

Code Duplication 60.97% D
Fan Out 100.00% A
pre post Security 99.08% A

v TQl Award League Position: 139
T‘iCS Measured on Oct 21, 2022

This product has been tested with the utmost care
against the TIOBE Quality Indicator 4.7

Components Datasets

ASML TU/e Page 22

Confidential

Study Design

Approaches
N
N
A @ , = 1</> [</>
smelly
N~ Static (J'Hubert) Static (rope)
python-rope/rope
B
N
N~
(0
Z-NXA SN
= |=— R AL
C =| = > UK .@22%.“%
N
pre post 730
~— LLM (GitHub Copilot) LLM (GitHub Copilot)@
Components Datasets Refactoring Identification Refactoring Application

ASML TU/e Page 23

Confidential

Study Design

Evaluation

Similarity - CodeBLEU

« CC

Qua“ty » LLOCs

* SLOCs

 Failed applications

‘ Correctness - Buiderrors

* Failed tests

ASML TU/e

PPPPPP

Confidential

What results we got?

I e

Correctness
Current Version Component A

Identification Application Failed applications Build errors Executed tests Failed test

LLM LLM 1 7 1,061 113 (10.7%)
LLM Static 40 0 955 51 (5.3%)
Static LLM 1 3 1,061 157 (14.8%)
Static Static 8 0 1,010 65 (6.4%)
Worst case - - 1,061 420 (39.6%)

Takeaway 1: LLMs are more flexible during application, while static

approaches account for syntactic and semantic correctness.

ASML TU/e Page 26

Confidential

Quality

Cyclomatic Complexity (CC) in Current Version Component A

ASML TU/e

Percentage CC compared to original function

Cyclomatic Complexity per Approach (Current Version)

100%

80%

60% -

40% -

20% -

0% A

LLM_LLM LLM_Static

Static_LLM

Static_Static

Current Version

(267 data points):

- Mean
- Median

Page 27

Confidential

Quality

Cyclomatic Complexity (CC) in Current Version Component A

Cyclomatic Complexity per Approach (Current Version)

100%

80%

60% -

40% -

Percentage CC compared to original function

20% -

0% A

ASML TU/e

LLM_LLM

-t Current Version
(267 data points):

— - Mean
— - Median

Takeaway 2: Static identification yields less complex

functions.

Page 28

Confidential

Quality

Cyclomatic Complexity (CC) in Ground Truth

Cyclomatic Complexity per Approach (Ground Truth)

140% -

120% -

100% A

80% A

60% - |

40% -

Percentage CC compared to original function

20% -

0% A

T
Manual

ASML TU/e

LLM_LLM LLM_Static Static_LLM Static_Static

Ground Truth
(181 data points):

- Mean
- Median

Page 29

Confidential

Quality

Cyclomatic Complexity (CC) in Ground Truth

Cyclomatic Complexity per Approach (Ground Truth)

140% -

120% -

100% A

80% A

60% -

40% -

Percentage CC compared to original function

20% -

0% A

ASML TU/e

Manual

Ground Truth
(181 data points):

—— e— - Mean

—_— - Median

Takeaway 3: ...but even less complex with a manual

approach.

Page 30

Confidential

Similarity

CodeBLEU in Ground Truth

CodeBLEU Score per Approach

1.0 - — — — — - —
0.8 1
g 0.6
& Ground Truth
5 (181 data points):
o — - Mean
% —_ - Medi
% edian
S 0.4
0.2 1 —
0.0
Manual LLM_LLM LLM_Static Static_LLM Static_Static
~
ASML TU/e Page 31
Confidential

Similarity

CodeBLEU in Ground Truth

CodeBLEU Score per Approach

1.0 —

0.8 1

CodeBLEU Score
=
o

e
I
i

0.2 4

0.0

T
Manual

ASML TU/e

Ground Truth
(181 data points):

— - Mean
—_— - Median

Takeaway 4: Static and LLM applications result into

refactored code similar to that manually created.

Page 32

Confidential

What did we learn?

R paem

The Al Reality

Generative Al demonstrates notorious capability in
understanding context, being flexible at applying complex
tasks, and generating comprehensible outputs at scale.

Observation: Unconstrained Al generation produces

Inconsistent outputs, introduces bugs, and lacks the
rigorous guarantees required for production systems.

ASML TU/e Pagew

Confidential

Summary

* Maintaining large scale legacy software systems is increasingly
complex.

* The key appeal of LLMs is their ability to produce human
comprehensible output.

« Establishing trustworthiness of probabilistic solution requires
further innovation of the technology but also in its application.

ASM I- TV\Uleay, Year

Confidential

Thanks!

ASML

Program Analysis and Al for
Legacy Code Modernisation

|Q| Dr. Alok Lele @ Eindhoven, The Netherlands

alok.lele@asml.com

Open to Work!

Dr. Lina Ochoa Jeffrey Lint
Il.m.ochoa.venegas@tue.nl j-a.h.lint@student.tue.nl

	Slide 1: Program Analysis and AI for Legacy Code Modernisation
	Slide 2: Why are we here?
	Slide 3: ASML In the News
	Slide 4: Complexity of a Twinscan (NXE) System
	Slide 5: Increasing complexity in developing scanner software
	Slide 6: Theory vs. Reality of Code Modernization
	Slide 7: Theory vs. Reality of Code Modernization
	Slide 8: The AI Belief
	Slide 9: Early exploration
	Slide 10: It’s a Team Efforts
	Slide 11: Early Exploration
	Slide 12: Visualizing the output
	Slide 13: Results
	Slide 14: Results
	Slide 15: Where Things Start to Get Difficult
	Slide 16: Let’s do some research…
	Slide 17: Research Team
	Slide 18: Research Team
	Slide 19: The Research Question
	Slide 20: What did we do?
	Slide 21: Study Design
	Slide 22: Study Design
	Slide 23: Study Design
	Slide 24: Study Design
	Slide 25: What results we got?
	Slide 26: Correctness
	Slide 27: Quality
	Slide 28: Quality
	Slide 29: Quality
	Slide 30: Quality
	Slide 31: Similarity
	Slide 32: Similarity
	Slide 33: What did we learn?
	Slide 34: The AI Reality
	Slide 35: Summary
	Slide 36

