

Datasheet CO₂ liquefaction

CO₂ recovery, purification and liquefaction

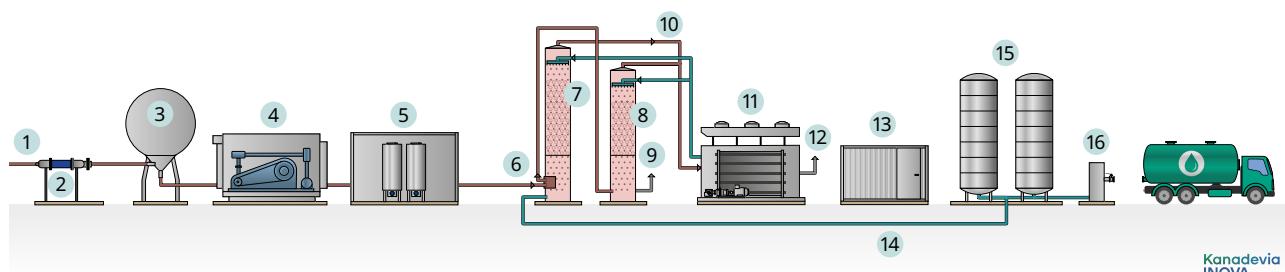
Carbon dioxide liquefaction process

The gas produced in biogas plants primarily consists of two components: carbon dioxide (CO₂) and methane. Instead of releasing the generated CO₂ into the environment, it can now be captured and utilised. To help mitigate the global increase in atmospheric CO₂ levels, there is a growing trend of recovering CO₂ from biomass and processing it for use in various applications. This is done at CO₂ liquefaction plants.

Technical description

The CO₂ liquefaction process involves cooling the gas to temperatures where CO₂ condenses into a liquid while trace gases such as nitrogen, methane, etc., remain in their gaseous state. The process includes cleaning, drying and compressing the CO₂ and condensing it to a liquid. To ensure the quality of the liquid CO₂, trace gases and other impurities are removed. Any methane remaining in the CO₂ can be captured and returned to the biogas plant, which improves the profitability and sustainability of biomethane production.

Market opportunities


- Environmental benefits and carbon credits: By capturing CO₂, biogas plants reduce carbon emissions significantly, enhancing their environmental sustainability. This process generates additional carbon credits, strengthening compliance with regulatory frameworks.

- Carbon capture and utilisation (CCU): The liquefied CO₂ produced during biogas upgrading can be captured and utilised in various industries. For example, it can be used in food and beverage production for carbonation, in greenhouses to enhance plant growth or in chemical manufacturing. This creates additional revenue streams for biogas producers, as they can sell the captured CO₂.
- Industrial applications and export potential: With increasing awareness of sustainable practices, industries are looking for solutions to reduce their carbon footprint. Liquefied CO₂ has growing market potential not just domestically but also in international markets, where renewable energy sources are highly sought-after.

Benefits

- 100% methane recovery
- Natural coolant CO₂
- Compact and modular design
- Food-grade product quality (ISBT/EIGA)
- Product guaranteed to have no odour, colour or taste

Schematic of principal setup

Kanadevia
INOVA

- | | | | |
|-----------------------|--|--|--|
| 1 Inlet gas piping | 6 Reboiler | 10 CH ₄ -, N ₂ -, O ₂ -rich gas | 15 Liquid CO ₂ storage tank |
| 2 Preconditioning | 7 Stripper column | 11 Condenser | 16 Truck filling |
| 3 Buffer tank | 8 DCC column (DCC: direct contact cooler) | 12 CH ₄ -, N ₂ -, O ₂ -rich off-gas | |
| 4 Compressor | 9 VOC-rich off-gas
(VOC: volatile organic components) | 13 Quality measurement | |
| 5 Cleaning and drying | | 14 Liquid CO ₂ | |

CO₂ liquefaction

		Model S	Model M	Model L
Plant size				
Nominal liquefaction capacity	kg/h input	550	1,200	2,300
Turn-down	%		50	

Technical data				
Container	ft	1 x 40'	2 x 20' 1 x 40'	4 x 20'
Weight, approx.	t	20	2 x 8 10	4 x 8
Height, approx.	m	10	11	12
Area outdoor installation ¹⁾	m x m	12 x 15	22 x 16.5	24 x 18

Performance data				
Voltage	V		400	
Frequency	Hz		50 / 3 Ph	
Design temperature	°C		-15 to +35	
Product quality			ISBT/EIGA (food and beverage quality)	
Input gas pressure	mbar (g)		≥100	
Power demand standard coolant R449A ²⁾	kWh/kg CO ₂ (input gas)		0.22	
Power demand option coolant R744 ²⁾	kWh/kg CO ₂ (input gas)		0.20	
Liquefaction efficiency ³⁾	%		Up to 94	

Emissions				
Sound pressure level at 10 m distance	dB (A)		≤80	

Options				
			CO ₂ product analyser with or without enclosure	
			CO ₂ product storage tanks including truck filling unit	
			Off-gas recovery	

Equipment				
Control system			Siemens	
Visualisation			WinCC	
Remote access			yes	

¹⁾Clarification of the upstream technology necessary

²⁾Design values. Guaranteed values may vary depending on the plant size

³⁾At ambient temperature of +15 °C and in compliance with the minimum requirements as per the CO₂ input gas specifications

Kanadevia Inova AG

Hardturmstrasse 127
8005 Zurich
Switzerland
P +41 44 277 11 11
info@kanadevia-inova.com
www.kanadevia-inova.com