

Cloud Hill Wind Farm

Technical Appendix 15.1 Carbon Calculations

August 2023

Project No.: 0669769

Page intentionally left blank

www.erm.com Version: 1.0 Project No.: 0669769 Client: Cloud Hill Wind Farm Ltd August 2023

CONTENTS

1.	WIND FARM CHARACTERISTICS	1
2.	CHARACTERISTICS OF PEATLAND	2
3.	CHARACTERISTICS OF BOG PLANTS	3
4.	FORESTRY PLANTATION CHARACTERISTICS	4
5.	COUNTERFACTUAL EMISSION FACTORS	5
6.	BOROW PITS	6
7.	FOUNDATIONS AND HARDSTANDING AREAS	7
8.	ACCESS TRACK	8
9.	CABLE TRENCHES.	9
10.	ADDITIONAL PEATLAND EXCAVATED	10
11.	IMPROVEMENT OF CARBON SEQUESTRATION	.11
12.	RESTORATIOPN OF SIE AFTER DECOMISSIONING	12

1. WIND FARM CHARACTERISTICS

	Expected Values	Minimum	Maximum	
Dimensions				
No. of Turbines	11	11	11	
Duration of consent (years)	35	35	35	
Peformance				
Power rating of 1 turbine (MW)	5.6	5.6	5.6	
Capacity Factor	38.6	38.5	38.7	
Fraction of output to backup (%)	5	0	5	
Additional emissions due to reduced thermal efficiency of the reserve generation (%)	10	10	10	
CO2 emissions from turbine life (tCO2/MW)				
Total CO2 emission from turbine life (tCO2 MW-1) (eg. manufacture, construction, decommissioning)	Calculate wrt installed capacity	Calculate wrt installed capacity	Calculate wrt installed capacity	

Source of Data
Chapter 1: Introduction
Chapter 1: Introduction
Candidate turbine is Vestas V150 5.6MW.
Client based estimate based on a site specific yield
assessment carried out by specialist consultant
Brightwind. Also informed by available information
from nearby sites.
Calculating Potential Carbon Losses & Savings from
Wind Farms on Scottish Peatlands, Technical Note,
Version 2.10.0, Para 19.
Fixed.
N/A.

2. CHARACTERISTICS OF PEATLAND

	Expected Values	Minimum	Maximum
Type of Peatland	Acid bog	Acid bog	Acid bog
Average annual air temperature at site °C	13.04	13	13.2
Average depth of peat at site (m)	0.48	0.47	0.49
C Content of dry peat (% by weight)	53.23	19.57	64.28
Average extent of drainage around drainage features at site (m)	10	5	50
Average water table depth at site (m)	0.1	0.05	0.3
Dry soil bulk density (g cm-3)	0.132	0.072	0.293

Source of data

Estimation from ERM based on typical type of Scottish Peatland.

Met Office Reference, nearest climate station: Glenlee.

Technical Appendix A10.2: Outline Peat Management Plan (oPMP) Site specific values are not available. Standard values are from "Windfarm Carbon Calculator Web Tool, User Guidance". Values for 'C Content of dry peat' have been used, Section 7.2.

Site specific values are not available. Standard values are from "Windfarm Carbon Calculator Web Tool, User Guidance". Values for 'average drainage extent' have been used, Section 7.2.

Site specific values are not available. Standard values are from "Windfarm Carbon Calculator Web Tool, User Guidance". Values for 'average water table depth' have been used, Section 7.2.

Site specific values are not available. Standard values are from "Windfarm Carbon Calculator Web Tool, User Guidance". Values for 'dry soil bulk density' have been used, Section 7.2.

3. CHARACTERISTICS OF BOG PLANTS

	Expected Values	Minimum	Maximum
Time required for regeneration of bog plants after restoration (years)	5	2	10
Carbon accumulation due to C fixation by bog plants in undrained peats (tC ha-1yr-1)	0.25	0.12	0.31

Source of data

McArthur Green technical estimation. From experience of monitoring bog plant restoration, this can vary widely depending on the location of the site and the target bog plants for restoration, and whether the ground was previously afforested or open moorland. The speed of regeneration will also depend on species present and their colonising ability and traits, as well as the methods of restoration and maintenance of hydrology. Typical bog plants may take longer to establish where suitable conditions exist. The values stated take this into account considering available literature and anectodical observations of wind farms in Scotland. Five years assumed a reasonable precautionary estimate for regeneration of most bog plants, some taking hold sooner (min value) and some requiring longer to establish (max value). A min and max of 2 and 10 years assumed. References: Whitelee Phase 3 Technical Appendix 9.1 Appendix B Restoring blanket bog from commercial forestry: summary of monitoring and management interventions at two large windfarm sites 2004 - 2011. Other online sources, academic literature (e.g. Anderson & Peace, 2017) and observations from other wind farms during surveys.

Calculating Potential Carbon Losses & Savings from Wind Farms on Scottish Peatlands, Technical Note, Version 2.10.0, para 25.

4. FORESTRY PLANTATION CHARACTERISTICS

	Expected Values	Minimum	Maximum
Method used to calculate Co2 loss from forest felling	0	0	0

	Expected Values	Minimum	Maximum
Area of forestry plantation to be felled (ha)	0	0	C
Average rate of carbon sequestration in timber	0	0	C

Source of Data	
N/A.	

No felling will take place as a direct result of the Proposed Develoopment. No felling will take place as a direct result of the Proposed Develoopment.

5. COUNTERFACTUAL EMISSION FACTORS

	Expected Values	Minimum	Maximum
Coal-fired plant emission factor (tCO2 MWh-1)	0.92	0.92	0.92
Grid-mix emission factor (tCO2MWh-1)	0.25358	0.25358	0.25358
Fossil fuel-mix emission factor (tCO2MWh-1)	0.45	0.45	0.45

Source of Data
Values in this section are fixed.
Values in this section are fixed.
Values in this section are fixed.

6. BORROW PITS

	Expected Values	Minimum	Maximum
No. of borrow pits	3	3	3
Average length of pits (m)	157	87	223
Average width of pits (m)	123.3	89	191
Average depth of peat removed from pit (m)	0.47	0.4	0.50

Source of Data
Chapter 4: Description of the
Proposed Development
Figure 4.12.1 - Figure 14.12.3.
Figure 4.12.1 - Figure 14.12.3.
ERM calculation based on site peat volume data (EIA Deisgn Freeze).

7. FOUNDATIONS AND HARDSTANDING AREAS

*associated with each turbine	Expected Values	Minimum	Maximum
Method used to calculate CO2 loss from foundations and hard-standing	Rectangular with vertical walls	Rectangular with vertical walls	Rectangular with vertical walls
Average length of turbine foundation (m)	25	24	26
Average width of turbine foundation (m)	25	24	26
Average depth of peat removed from turbine foundations (m)	0.5002	0.4	0.5
Average length of hard-standing (m)	75	74	76
Average width of hardstanding (m)	25	24	26
Average depth of peat removed from hard- standing (m)	0.4551	0.455	0.4552
Volume of concrete used in construction of the ENTIRE windfarm (m3)	13,750	13749	13751

Source of data
N/A
Chapter 4: Description of the Proposed
Development
Chapter 4: Description of the Proposed
Development
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
Chapter 4: Description of the Proposed
Development
Chapter 4: Description of the Proposed
Development
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
 data (EIA Deisgn Freeze).

8. ACCESS TRACK

	Expected Values	Minimum	Maximum			
Existing track length (m)	3126.4	3121	3131			
Floating road						
Length of access track (m)	334.17	329	339			
Floating road width (m)	5	5	5			
Floating road depth (m)	0.2	0.1	0.3			
Length og floating road that is drained (m)	334.17	329	339			
Average depth of drains associated with floating roads (m)	0.5	0.4	0.6			
Excavated Road						
Length of access track (m)	4493.6	4488	4498			
Excavated road width (m)	5	5	5			
Average depth of peat excavated for road (m)	0.489	0.1	5			
Rock filled road						
Length of access track (m)	5285.7	5280	5290			
Rock filled road width (m)	5	5	5.5			
Rock filled road depth (m)	0.2	0.15	0.25			
Length of rock filled road that is drained (m)	5285.7	5280	5290			
Average depth of drains associated with rock filled roads (m)	0.5	0.4	0.6			
Total						
Total length of access track (m)	13239.87	13234	13244			

Source of data
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).

9. CABLE TRENCHES

	Expected Values	Minimum	Maximum
Length of any cable tranch on peat that does not follow acces tracks and is lined with a permeable medium (e.g sand) (m)	N/A	N/A	N/A
Average depth of peat cut for cable trenches (m)	0.1	0.05	0.15

Source of Data
All cabling is to follow the route of access
tracks and be incorporated into the access
tracks and associated verges (Chapter 4:
Description of The Development).
ERM calculation based on site peat volume
data (EIA Deisgn Freeze).

10. ADDITIONAL PEATLAND EXCAVATED

*not already accounted above	Expected Values	Minimum	Maximum	
Volume of additional peat excavated (m3)	4189			
Area of additional peat excavated (m2)	8,378			
Peat Landslide Hazard and Risk Assessments				
Peat Landslide Hazard	Low/negligible	Low/negligible	Low/negligibl e	

Source of Data
Appendix A10.2 Outline Peat
Management Plan, Section 3.2.
ERM calculation based on site
peat volume data (EIA Deisgn
Fixed

11. IMPROVEMENT OF CARBON SEQUESTRATION

0	Expected Values	Minimum	Maximum	
Improvement of degraded bog				
Area of degraded bog to be improved (ha)	418.2	400	430	
Water table depth in degraded bog before improvement (m)	0.05	0.1	0.3	
Water table depth in degraded bog after improvement (m)	0.05	0.1	0.3	
Time required for hydrology and habitat of bog to return to its previous state on improvement (years)	N/A	N/A	N/A	
Period of time when effectiveness of the improvement in degraded bog can be guaranteed (years)	N/A	N/A	N/A	
Improvement of felled plantation land				
Area of felled plantation to be improved (ha)	0	0	0	
Water table depth in felled area before improvement (m)	0	0	0	
Water table depth in felled area after improvement (m)	0	0	0	
Time required for hydrology and habitat of felled plantation to return to its previous state on improvement (years)	0	0	0	
Period of time when effectiveness of the improvement in felled plantation can be guaranteed (years)	0	0	0	
Restoration of peat removed from borrow pits				
Area of borrow pits to be restored (ha)	2.9	2.9	2.9	
Depth of water table in borrow pit before restoration with respect to the restored surface (m)	0.1	0.05	0.3	
Depth of water table in borrow pit after restoration with respect to the restored surface (m)	0.1	0.05	0.3	
Time required for hyrdology and habitat of borrow pit to return to its previous state on restoration (years)	3	2	5	
Period of time when effectiveness of the restoration of peat removed from borrow bits can be guranteed (years)	5	2	15	
Early Removal of drainage from foundations and hardstanding				
Water table depth around foundations and hardstanding before restoration (m)	0.05	0.1	0.3	
Water table depth around foundations and hardstanding after restoration (m)	0.05	0.1	0.3	
Time to completion of backfilling, removal of any surface drains, and full restoration of the hydrology (years)				

Source of Data
Technical Appendix TA7.6: Outline Biodiversity
Enhancement Management Plan
McArthur Green technical estimation.
N/A
Technical Appendix TA7.6: Outline Biodiversity
Enhancement Management Plan
McArthur Green technical estimation.
McArthur Green technical estimation.
McArthur Green technical estimation.
McArthur Green technical estimation.

12. RESTORATION OF SITE AFTER DECOMISSIONING

	Expected Values (yes, no, not applicable)	Minimum	Maximum		
Will the hydrology of the site be restored on deco	ommissioning?				
Will you attempt to block any gullies that have formed due to the windfarm? N/A N/A N/A Will you attempt to block all artificial ditches and					
facilities rewetting?	N/A	N/A	N/A		
Will the habitat of the site be restored on decommissioning?					
Will you control grazing on degraded areas?	N/A	N/A	N/A		
Will you manage areas to favour reintroduction of species?	N/A	N/A	N/A		

Notes			
N/A			
N/A			
N/A			
N/A			

ERM has over 160 offices across more 40 countries and territories worldwide

ERM's Edinburgh Office

6th Floor, 102 West Port EH3 9DN Edinburgh

T: +44 (0)20 3206 5200 F: +44 (0)20 3206 5440

www.erm.com

