
 Copyright © by HiveMQ. All Rights Reserved.

 Copyright © by HiveMQ. All Rights Reserved.

WELCOME

Silvio Giebl Clive Jevons• Software Developer
@HiveMQ

• Developer and
Maintainer of the
HiveMQ MQTT Client

• Distributed & scalable
systems

• High performance and
reactive applications

• Independent Consultant
@Jevons IT

• Used the HiveMQ MQTT
Client to integrate it in a
connected car platform

• Was involved in the
development of the
HiveMQ MQTT Client

 Copyright © by HiveMQ. All Rights Reserved.

What we will talk about ...

• What is an MQTT client?
→ You will learn how flexible MQTT can be used for a variety of use cases

• Why HiveMQ MQTT Client?
→ You will learn the features and the advantages

• Real world Enterprise use case of the HiveMQ MQTT Client
in a connected car platform
→ You will learn from the experience of an actual user

 Copyright © by HiveMQ. All Rights Reserved.

What is MQTT?

 Copyright © by HiveMQ. All Rights Reserved.

What is MQTT?

• Communication protocol
• Publish/Subscribe pattern
• OASIS and ISO Standard (ISO/IEC PRF 20922)

→ interoperability
• Decoupling of sender and receiver in space, in time

→ more robust and scalable
• QoS levels

→ reliable communication over unreliable networks
• Flexible, lightweight, dynamic topics, data agnostic
• Use cases: IoT, IIoT, Industry 4.0, Logistics, Connected Cars, ...

→ everything that links a lot of devices

 Copyright © by HiveMQ. All Rights Reserved.

What is MQTT 5?

• A lot of additional features while keeping MQTT lightweight and flexible
• Many improvements making MQTT an even more versatile protocol

 Copyright © by HiveMQ. All Rights Reserved.

What is an MQTT Client?

 Copyright © by HiveMQ. All Rights Reserved.

What is an MQTT Client?

• MQTT is known to be used for small devices
• Actually it is used for a variety of systems
• MQTT is lightweight and does not put restrictions on applications

→ Almost everything can be an MQTT client

• Embedded: sensors, control units, ...
• Mobile/desktop: apps, browser applications, ...
• Backend: integration with other systems, databases, microservices, ...
• Different use cases, different requirements
• But all have in common that they need to communicate in a reliable way

 Copyright © by HiveMQ. All Rights Reserved.

MQTT Clients for Embedded

Requirements

• Low computing power
• Low bandwidth
• High latency
• Unstable network
• Huge amount of devices, little data per device

→ All covered by MQTT

• MQTT clients are lightweight
• Minimal network overhead
• QoS guarantees
• MQTT Broker removes complexity from clients, ensures scalability

 Copyright © by HiveMQ. All Rights Reserved.

MQTT Clients for Mobile

Requirements

• Platform independent
• Responsiveness, reactiveness
• Unstable network

→ All covered by MQTT

• MQTT is a wire protocol standard, so interoperable
• MQTT is push based
• QoS guarantees

 Copyright © by HiveMQ. All Rights Reserved.

MQTT Clients for Backends

• Usually MQTT is used for a huge amount of clients, each handling a small
portion of the data

• Backend systems are often used for ingestion of all data for monitoring,
analytics and control

Requirements

• Scalability
• High throughput per service
• Reliability, no message loss, no overload, backpressure

→ All covered by MQTT

• Scalability is ensured by the broker
• Shared subscriptions for scaling out/load balancing MQTT clients

 Copyright © by HiveMQ. All Rights Reserved.

MQTT Clients for Backends

• Shared subscriptions are especially useful for microservice like systems
• Subscribers can join/leave the shared subscription group dynamically
• Shared subscriptions are standardized with MQTT 5

(they can be supported for MQTT 3 as well)

 Copyright © by HiveMQ. All Rights Reserved.

HiveMQ MQTT Client

 Copyright © by HiveMQ. All Rights Reserved.

HiveMQ MQTT Client

• MQTT Client Java Library
• All MQTT 3.1.1 and MQTT 5 features (including all optional features)
• Open Source
• Different API flavors: Reactive, Asynchronous, Blocking

Key Benefits

• Reactive
• Backpressure, Stability, Reliability
• Resource efficiency, low overhead, high throughput

 Copyright © by HiveMQ. All Rights Reserved.

MQTT Features

• MQTT 3 and 5: all QoS levels, retained messages, Will/LWT, ...
• MQTT 5

• Session expiry
• Message expiry
• Flow Control → better backpressure handling
• Shared subscriptions (also supported for MQTT 3)
• Payload Format Indicator and Content Type
• User properties
• Negative acknowledgements and reason strings
• Request/Response
• Topic Aliases (automatically)
• Subscription Identifiers (automatically)
• Enhanced Auth

 Copyright © by HiveMQ. All Rights Reserved.

Features on top of MQTT

• TLS/SSL
• Websocket, Secure Websocket
• Automatic reconnect (automatic & configurable)
• Offline message buffering
• Thread management (automatic & configurable)
• Thread safety
• Pluggable Enhanced Auth support
• Automatic topic alias tracing and mapping
• Backpressure handling (deep integration with the reactive API)

 Copyright © by HiveMQ. All Rights Reserved.

Open Source

• Source code on GitHub: https://github.com/hivemq/hivemq-mqtt-client
• Apache 2 license
• Free to use
• Actively maintained by HiveMQ
• Transparent development

• Issues and PRs on GitHub
• Feedback and contributions are welcome

• Why Open Source?
• MQTT is the standard IoT protocol
• Everybody should be able to use MQTT

https://github.com/hivemq/hivemq-mqtt-client

 Copyright © by HiveMQ. All Rights Reserved.

Example Uses

MQTT CLI

• Command Line Tool
• Debugging
• Simulating MQTT Clients

Internal: HiveMQ Device Simulator

• Simulating millions of MQTT clients with few machines
• Used to reproduce customer scenarios
• Used as a benchmark tool

 Copyright © by HiveMQ. All Rights Reserved.

Why Different API Flavors?

• Enables fast prototyping
• All APIs are as simple as possible
• But starting with the blocking API is often simpler
• Only a few lines of code for MQTT communication

• Allows evolution of applications
• Asynchronous API is often enough
• Parts can be switched to reactive when scaling and more precise

backpressure control is needed
• Different API styles can be used simultaneously

• Fluent Builders also help
• Only use the features you need
• When you need more features, no need to rewrite your whole code

 Copyright © by HiveMQ. All Rights Reserved.

What Does Lightweight Mean?

• Communication should not use a major part of the computing time
• Low memory usage → around 5KB per client instance
• Many clients possible

• Intelligent thread pooling
• Overhead per client is minimal

• Also possible to use 1 client by many threads → flexibility
• Recommendation: if different parts of a service are independent, use

more clients instead of sharing 1 client to avoid unnecessary
coupling

• Application messages and computations are important

 Copyright © by HiveMQ. All Rights Reserved.

Embedded, Mobile, Backend

• Resource efficiency helps all use cases
• Embedded/mobile → hardware/battery restrictions
• Backend → enables higher throughput for actual processing

• Backend:
• Scaling with shared subscriptions
• Backpressure helps building more robust systems

• Mobile: Support for Android
• API 19/KitKat and up → > 96%

• Reactive API
• Mobile: responsiveness,

often used on Android
• Backend: resilience

https://developer.android.com/about/dashboards

https://developer.android.com/about/dashboards

 Copyright © by HiveMQ. All Rights Reserved.

Why Reactive?

• Reactive Manifesto (https://www.reactivemanifesto.org/):
• Responsive
• Resilient
• Elastic
• Message driven

• Reactive is the solution for high scale applications
• Perfect fit for MQTT

https://www.reactivemanifesto.org/

 Copyright © by HiveMQ. All Rights Reserved.

Why Reactive?

• HiveMQ MQTT Client is reactive
• In its core
• Has a reactive API using RxJava which follows the reactive streams

specification
• Interoperable with other reactive libraries (interoperability is not only

important for the MQTT protocol, but also the libraries)
• Barrier of entry:

• You have to learn new concepts, think differently
• Good news: you can start with the asynchronous API and move to

reactive later

 Copyright © by HiveMQ. All Rights Reserved.

What is Backpressure?

• Mechanism to adapt message rates in an asynchronous system
• If an application is overwhelmed by too many messages

• It might crash
• It might drop important messages (without other applications/the

broker even knowing)
• A lot of unnecessary work is done when dropping messages

• Backpressure lets the application that produces too many messages know,
that they can not be handled → appropriate and early actions can be taken

• When using shared subscriptions the load can be better balanced between
all clients in the group

• → Backpressure improves resilience and robustness
• MQTT 5 Flow Control limits concurrent unacknowledged messages

 Copyright © by HiveMQ. All Rights Reserved.

API Design

"APIs should be easy to use and hard to misuse. It should be
easy to do simple things; possible to do complex things; and

impossible, or at least difficult, to do wrong things."
(Joshua Bloch)

• The HiveMQ MQTT Client gives you full control over all MQTT features
• It is not a restrictive framework
• But using sensible defaults, you do not have to configure everything
• The context sensitive fluent builder pattern used throughout the library

enables short concise code but highly customizable

 Copyright © by HiveMQ. All Rights Reserved.

Code examples

 Copyright © by HiveMQ. All Rights Reserved.

Setup

dependencies {
 implementation group: 'com.hivemq', name: 'hivemq-mqtt-client', version: '1.1.3'
}

<dependencies>
 <dependency>
 <groupId>com.hivemq</groupId>
 <artifactId>hivemq-mqtt-client</artifactId>
 <version>1.1.3</version>
 </dependency>
</dependencies>

Maven Central, JCenter, JitPack

 Copyright © by HiveMQ. All Rights Reserved.

Client configuration

Mqtt5Client client1 = Mqtt5Client.builder().build();

Mqtt5Client client2 = Mqtt5Client.builder()
 .identifier("client2")
 .serverHost("broker.hivemq.com")
 .serverPort(1234)
 .sslWithDefaultConfig()
 .webSocketWithDefaultConfig()
 .automaticReconnectWithDefaultConfig()
 .addConnectedListener(context -> System.out.println("connected"))
 .addDisconnectedListener(context -> System.out.println("disconnected"))
 .build();

 Copyright © by HiveMQ. All Rights Reserved.

Client configuration

Mqtt5Client client3 = Mqtt5Client.builder()
 .identifier("client3")
 .transportConfig()
 .serverHost("broker.hivemq.com")
 .serverPort(1234)
 .sslConfig()
 .protocols(Arrays.asList("TLSv1.3"))
 .cipherSuites(Arrays.asList("TLS_AES_128_GCM_SHA256"))
 .trustManagerFactory(myTrustManager)
 .keyManagerFactory(myKeyManager)
 .applySslConfig()
 .webSocketConfig()
 .serverPath("mqtt")
 .subprotocol("mqtt")
 .applyWebSocketConfig()
 .applyTransportConfig()
 ...

 Copyright © by HiveMQ. All Rights Reserved.

Client configuration

 ...
 .automaticReconnect()
 .initialDelay(100, TimeUnit.MILLISECONDS)
 .maxDelay(10, TimeUnit.SECONDS)
 .applyAutomaticReconnect()
 .addDisconnectedListener(context -> {
 context.getReconnector().reconnectWhen(
 getOAuthToken(),
 (token, throwable) -> {
 ((Mqtt5ClientDisconnectedContext) context).getReconnector()
 .connectWith()
 .simpleAuth().password(token).applySimpleAuth()
 .applyConnect();
 });
 })
 ...

 Copyright © by HiveMQ. All Rights Reserved.

Client configuration

 ...
 .simpleAuth()
 .username("username")
 .password("password".getBytes())
 .applySimpleAuth()
 .willPublish()
 .topic("will")
 .qos(MqttQos.AT_LEAST_ONCE)
 .payload("hello world".getBytes())
 .messageExpiryInterval(10)
 .payloadFormatIndicator(Mqtt5PayloadFormatIndicator.UTF_8)
 .contentType("text/plain")
 .userProperties()
 .add("time", System.currentTimeMillis() + "ms")
 .add("sender", "client3")
 .applyUserProperties()
 .applyWillPublish()
 .build();

 Copyright © by HiveMQ. All Rights Reserved.

Simple Publish & Subscribe

client.connect();
client.publishWith()
 .topic("demo/topic")
 .qos(MqttQos.EXACTLY_ONCE)
 .payload("hello world".getBytes())
 .send();
client.disconnect();

client.connect();
client.toAsync().subscribeWith()
 .topicFilter("demo/#")
 .callback(System.out::println)
 .send();
client.disconnect();

 Copyright © by HiveMQ. All Rights Reserved.

Async Publish

Mqtt5AsyncClient async = client.toAsync();

async.connect()
 .thenCompose(connAck -> async.publishWith()
 .topic("demo/topic")
 .qos(MqttQos.EXACTLY_ONCE)
 .send())
 .thenCompose(publishResult -> async.disconnect());

 Copyright © by HiveMQ. All Rights Reserved.

MQTT 5 Features

client.connectWith()
 .cleanStart(false) // resume a previous session
 .sessionExpiryInterval(30) // keep session state for 30s
 .restrictions()
 .receiveMaximum(10) // receive max. 10 concurrent messages
 .sendMaximum(10) // send max. 10 concurrent messages
 .maximumPacketSize(10_240) // receive messages with max size of 10KB
 .sendMaximumPacketSize(10_240) // send messages with max size of 10KB
 .topicAliasMaximum(0) // the server should not use topic aliases
 .sendTopicAliasMaximum(8) // use up to 8 aliases for the most used topics
 .applyRestrictions()
 .send();

 Copyright © by HiveMQ. All Rights Reserved.

MQTT 5 Features

client.publishWith()
 .topic("demo/topic")
 .qos(MqttQos.EXACTLY_ONCE)
 .payload("hello world".getBytes())
 .retain(true)
 .payloadFormatIndicator(Mqtt5PayloadFormatIndicator.UTF_8)
 .contentType("text/plain") // our payload is text
 .messageExpiryInterval(120) // not so important, expire after 2min if can not be delivered
 .responseTopic("demo/response")
 .correlationData("1234".getBytes())
 .userProperties() // add some user properties to the message
 .add("sender", "client1")
 .add("receiver", "you")
 .applyUserProperties()
 .send();

 Copyright © by HiveMQ. All Rights Reserved.

Reactive Request/Response

Flowable<Mqtt5Publish> requestStream = client.toRx()
 .subscribeStreamWith()
 .topicFilter("request/topic")
 .applySubscribe();

Flowable<Mqtt5PublishResult> responseStream = client.toRx()
 .publish(requestStream
 .filter(requestPublish -> checkIfResponsible(requestPublish))
 .observeOn(Schedulers.computation())
 .map(requestPublish -> Mqtt5Publish.builder()
 .topic(requestPublish.getResponseTopic().get())
 .qos(requestPublish.getQos())
 .payload(performComputation(requestPublish.getPayload()))
 .correlationData(requestPublish.getCorrelationData().orElse(null))
 .build()));

responseStream.subscribe();

 Copyright © by HiveMQ. All Rights Reserved.

Reactive Android Example

client1.toRx()
 .subscribeStreamWith()
 .topicFilter("chat1/messages/#")
 .applySubscribe()
 .observeOn(AndroidSchedulers.mainThread())
 .doOnNext(message -> addMessageToUi(message))
 .observeOn(AndroidSchedulers.from(backgroundLooper))
 .filter(message -> isImportant(message))
 .doOnNext(message -> createNotification(message))
 .subscribe();

 Copyright © by HiveMQ. All Rights Reserved.

Use of MQTT Clients in a
Connected Car Platform

 Copyright © by HiveMQ. All Rights Reserved.

Use Cases

1) Mirroring fleet data between clusters

2) Integrating HiveMQ Client into communication middleware
joynr

3) Using HiveMQ Client for processing data from a production
plant

 Copyright © by HiveMQ. All Rights Reserved.

Resources

MQTT Essentials Series

Evaluate HiveMQ Broker

Try HiveMQ Cloud for Free

Get Started with MQTT

MQTT at OASIS

https://www.hivemq.com/mqtt-essentials/?utm_source=SlidePresentation&utm_medium=email&utm_campaign=January2022Webinar
https://www.hivemq.com/downloads/hivemq/?utm_source=SlidePresentation&utm_medium=email&utm_campaign=January2022Webinar
https://www.hivemq.com/mqtt-cloud-broker/?utm_source=SlidePresentation&utm_medium=email&utm_campaign=January2022Webinar
https://www.hivemq.com/download-mqtt-ebook/?utm_source=SlidePresentation&utm_medium=email&utm_campaign=January2022Webinar
https://mqtt.org/?utm_source=SlidePresentation&utm_medium=email&utm_campaign=January2022Webinar

ANY
QUESTIONS?
Reach out to community.hivemq.com

https://community.hivemq.com/

THANK YOU

Stay updated on upcoming webinars

Subscribe to our Newsletter!

https://www.hivemq.com/newsletter/

