

Betriebsanleitung

AC•THOR / AC•THOR 9s: Betriebsanleitung

Letzte Aktualisierung: 21.10.2025, 14:31

Firmware Version: a0022100

1	Montage
2	Inbetriebnahme
	2.1 Auswahl der Sprache
	2.2 Auswahl der Betriebsart
	2.3 Mögliche Signalquellen
	2.4 Temperatursensor zuordnen und aktivieren
	2.5 Speichern der Einstellungen
3	Bedienungs- und Anzeigeelemente
	3.1 Homescreen
	3.2 Datenlogger
	3.3 Statusinformation am Display
	3.4 Einstellungen
	3.5 Hilfe

4.1 M1: Warmwasser 4.1.1 Erklärung 4.1.2 Spezifische Einstellungen zur Betriebsart M1 4.1.3 Temperaturfühler (nur bei AC•THOR 9s) 4.2 M2: Warmwasser Schichtladung 4.2.1 Erklärung 4.2.2 Spezifische Einstellungen zur Betriebsart M2 4.3 M3: Warmwasser 6kW/18kW 4.3.1 Erklärung 4.3.2 Lastmessung an Relais mit my-PV Meter (empfohlen) 4.3.3 Spezifische Einstellungen zur Betriebsart M3 4.4 M4: Warmwasser + Wärmepumpe 4.4.1 Erklärung 4.4.2 Spezifische Einstellungen zur Betriebsart M4 4.5 M5: Warmwasser + Raumheizung 4.5.1 Erklärung 4.5.2 Spezifische Einstellungen zur Betriebsart M5 4.5.3 Temperaturfühler 4.6 M6: Raumheizung 4.6.1 Erklärung

4.6.2 Spezifische Einstellungen zur Betriebsart M6

4.6.3 Temperaturfühler

4.7.1 Erklärung
4.7.2 Spezifische Einstellungen zur Betriebsart M7
4.8 Frequenzmodus
5 Allgemeine Einstellungen
6 Lokales Web-Interface
6.1 Gerätesuche im Netzwerk
6.2 Anlagen ohne Internetzugang
6.3 Web-Interface verbinden
6.4 Home (Startseite)
6.5 Datenlogger
6.6 Statusinformation
6.7 Einstellungen
6.8 Besondere Einstellmöglichkeiten im Web-Interface
6.8.1 Besondere Einstellungen zur Betriebsart M1
6.8.2 Besondere Einstellungen zur Betriebsart M3 (6kW/18 kW)
6.8.3 Legionellen-Boost Ausgänge (nur bei AC•THOR 9s)
6.8.4 Steuerungs-Einstellungen
6.8.5 Messwerte-Einstellungen
6.8.6 Ladestation Funktion
6.8.7 Mehrere Geräte (Multi-Mode)
6.8.8 API

6.9 Hilfe
7 Frequenzsteuerung
7.1 Erklärung
7.2 Spezifische Einstellungen zur Frequenzsteuerung
8 Potentialfreier Eingang für externe Ansteuerung
9 Modbus RTU Anschluss für externe Ansteuerung
10 Firmware Update
10.1 Update von Server
10.1.1 Manuelles Update
10.2 Update mit SD Karte
11 Statuscodes
12 Temperaturfühler: Zuordnung und Funktion (nur bei AC•THOR 9s)
13 Fehler Temperatursensoren
14 Fehlermeldungen am Display
15 Fehlersignale des AC•THOR Logos

1. Montage

Vor Inbetriebnahme lesen Sie bitte unbedingt die dem Gerät beiliegende Montageanleitung.

2. Inbetriebnahme

Dem Gerät liegt eine Schnellstart-Anleitung bei, in der jeder Schritt der Erstinbetriebnahme im Detail erläutert ist. Diese Anleitungen finden sie auch **hier**

2.1. Auswahl der Sprache

Verwenden sie die Pfeiltasten links und rechts, um weitere Möglichkeiten zu sehen.

2.2. Auswahl der Betriebsart

Siehe Kapitel "Betriebsarten".

Die Auswahl kann auch zu einem späteren Zeitpunkt noch verändert werden.

2.3. Mögliche Signalquellen

my-PV WiFi Meter

Kompatible Hersteller

Anleitungen finden sie hier

Anleitungen finden sie hier

Weitere voreingestellte Steuerungen (ohne gesonderte Anleitung) sind hier gelistet:

Signalquelle my-PV Power Meter Direkt

Hardware Direktverbindung **Schnittstelle** (RJ45, Ethernet)

Anmerkungen Verbindung zum my-PV Power Meter wird direkt ohne Netzwerk hergestellt. Für

diese Verbindungsart ist ein Crossover Netzwerkkabel zu verwenden!

Der my-PV Power Meter wurde 2022 durch den my-PV WiFi Meter ersetzt.

Mit dem my-PV WiFi Meter ist keine Direktverbindung möglich!

Signalquelle my-PV API

Hardware Netzwerk

Schnittstelle (RJ45, Ethernet)

Anmerkungen Zur Ansteuerung über das Internet.

Siehe Kapitel "Besondere Einstellmöglichkeiten im Web-Interface".

Signalquelle my-PV WiFi Meter (Modbus RTU)

Hardware Modbus RTU
Schnittstelle (RS485, A B GND)

Anmerkungen Anbindung möglich ab WiFi Meter Seriennummer: 230505XXXX!

Zur Nutzung der my-PV Cloud ist empfohlen, den AC•THOR zusätzlich auch in

das Netzwerk einzubinden!

Signalquelle Adjustable Modbus RTU

Hardware Modbus RTU
Schnittstelle (RS485, A B GND)

Anmerkungen Am Display nicht auswählbar, die Konfiguration erfolgt im Web-Interface.

Zumindest für die Inbetriebnahme ist somit temporär ein Netzwerkzugang (RJ45,

Ethernet) nötig.

Über RS485 kann der AC•THOR, nur als Modbus RTU Master fungieren. Eine

freiprogrammierbare Steuerung ist damit nicht möglich.

Siehe Kapitel "Besondere Einstellmöglichkeiten im Web-Interface".

Anschlussschaubild laut Kapitel 9.

Bei der Ansteuerung durch Modbus RTU kann die Betriebsart M7 nicht

verwendet werden!

Signalquelle Adjustable Modbus TCP (Sunspec etc)

Hardware Netzwerk
Schnittstelle (RJ45, Ethernet)

Anmerkungen Am Display nicht auswählbar, die Konfiguration erfolgt im Web-Interface.

Siehe Kapitel "Besondere Einstellmöglichkeiten im Web-Interface".

Signalquelle Carlo Gavazzi EM24 Manual

Hardware Netzwerk
Schnittstelle (RJ45, Ethernet)

Anmerkungen Freigegeben für Zählertype EM24 mit Modbus TCP.

Signalquelle Frequency

Hardware Schnittstelle Netzanschluss

Anmerkungen

Siehe Kapitel 7 Frequenzsteuerung

Signalquelle

http

Hardware

Netzwerk

Schnittstelle

(RJ45, Ethernet)

Anmerkungen

Zur Steuerung durch frei programmierbare Energiemanagement- bzw. Smart Home Systeme, ist eine Beschreibung der offenen Protokolle Modbus TCP und http in einem gesonderten Dokument verfügbar. Die Verbindung zur Signalquelle erfolgt dabei über LAN. Die Beschreibung finden sie hier oder unter

www.my-pv.com/de/info/downloads/ mit dem Suchwort "Controls".

Signalquelle

MEC electronics Manual

Hardware

Netzwerk

Schnittstelle

(RJ45, Ethernet)

Anmerkungen

Freigegeben für Zählertype MECmeter.

Signalquelle

Modbus TCP

Hardware

Netzwerk

Schnittstelle

(RJ45, Ethernet)

Anmerkungen

Zur Steuerung durch frei programmierbare Energiemanagement- bzw. Smart Home Systeme, ist eine Beschreibung der offenen Protokolle Modbus TCP und http in einem gesonderten Dokument verfügbar. Die Verbindung zur

Signalquelle erfolgt dabei über LAN. Die Beschreibung finden sie <u>hier</u> oder unter

www.my-pv.com/de/info/downloads/ mit dem Suchwort "Controls".

Signalquelle

Slave

Hardware

Netzwerk

Schnittstelle

(RJ45, Ethernet)

Anmerkungen

Nicht manuell auswählbar. Siehe Kapitel "Mehrere Geräte"

Signalquelle Hardware Schnittstelle Anmerkungen Signalquelle Hardware Schnittstelle Anmerkungen Signalquelle Hardware Schnittstelle Anmerkungen Signalquelle Hardware Schnittstelle

Achtung

Anmerkungen

Bei Ansteuerung durch einen Wechselrichter ist ein Einspeisezähler im System erforderlich. Die Abfrage des Wechselrichters liefert ansonsten keine Daten.

Wir bitten um Verständnis, dass wir für Fremdprodukte keinen verbindlichen Support übernehmen können. Bei Fragen zu Fremdprodukten bitte den technischen Support des jeweiligen Unternehmens kontaktieren.

Achtung

Nicht jede Signalquelle ist für Hybridsysteme mit Batteriespeicher freigegeben. Bei Bedarf bitte den technischen Support von my-PV kontaktieren.

Achtung

Bei Betrieb mit Batterie sind unter Umständen weitere Regelparameter erforderlich. In diesem Fall bitte den technischen Support von my-PV kontaktieren.

2.4. Temperatursensor zuordnen und aktivieren

Dem Sensor wird dabei eine Nummer in der Reihenfolge der Auswahl zugeordnet. Die Auswahl kann durch ein erneutes Antippen wieder aufgehoben werden.

Zur Zuordnung eines Sensors zum jeweiligen Listeneintrag sind die Seriennummern auch an einer Etikette des Sensorkabels erkennbar.

Q TIPP

Da der Messwert des Sensors bereits in der Auswahlliste angezeigt wird, kann eine Zuordnung alternativ auch durch einfache Temperaturveränderung am Sensor erfolgen!

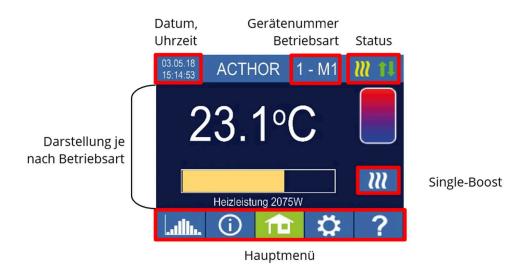
Q TIPP

Die Verwendung eines Sensors ist **nicht** erforderlich, wenn die optionale Temperatursicherstellung oder das Legionellenprogramm nicht verwendet werden und die Abschaltung des Wärmeerzeugers durch ein Thermostaten erfolgt!

2.5. Speichern der Einstellungen

Mit dem Speichern ist die Inbetriebnahme für Überschussnutzung abgeschlossen. Zusatzfunktionen, wie zum Beispiel die optionale Temperatursicherstellung, sind gesondert einzustellen.

3. Bedienungs- und Anzeigeelemente


3.1. Homescreen

Der "Home" Button führt immer zum Homescreen zurück. In der oberen Leiste wird das aktuelle Datum, die Uhrzeit, die Gerätenummer und die Betriebsart (Mode M1 – Mx) angezeigt. Rechts zeigen Symbole den aktuellen Gerätestatus.

Der Inhalt des Homescreens stellt sich je nach Betriebsart unterschiedlich dar und zeigt wieviel Leistung der AC•THOR gerade an den Verbraucher abgibt. Je nachdem ob und wie viele Temperatursensoren definiert sind, werden auch die Messwerte angezeigt.

Homescreen AC•THOR:

Homescreen AC•THOR 9s:

Beim AC•THOR 9s setzt sich die Leistungsanzeige aus drei Balken zusammen.

Lastausgang Out-3 Lastausgang Out-2 Lastausgang Out-1

Bei Verwendung mehrerer Temperaturfühler wird die Fühlernummer eingeblendet

Der Button "Single-Boost" erscheint nur bei Warmwasser-Betriebsarten, wenn die Funktion zur Sicherstellung einer Mindesttemperatur aktiviert ist. Die Betätigung des Buttons startet einen <u>einmaligen</u> Sicherstellungbetrieb. Dieser kann bei laufendem Vorgang auch wieder deaktiviert werden.

Findet die Sicherstellung aufgrund von Wochentag, Uhrzeit und Temperatur automatisch statt, dann kann diese über den Button nicht deaktiviert werden.

Statussymbole

Leuchtet = Zieltemperatur erreicht

Statussymbole

Blinkt = Standby, wartet auf Überschuss

Statussymbole

Leuchtet = Heizen mit PV Überschuss. Blinkt = Sicherstellungsbetrieb

Statussymbole

Leuchtet = kein Steuersignal

Statussymbole

Leuchtet = Physische Verbindung am RJ45 Netzwerkanschluss intakt

Statussymbole

Leuchtet = Keine intakte physische Verbindung am RJ45 Netzwerkanschluss

Statussymbole

Blockzeit aktiv

3.2. Datenlogger

(i)

Hinweis

Ab Firmwareversion a0022100 ist der Datenlogger werkseitig deaktiviert.

Um den Datenlogger zu aktivieren, führen Sie folgenden Schritte aus:

- 1. Verbinden Sie sich mit dem Smartphone oder Laptop in dasselbe Netzwerk wie der AC•THOR.
- 2. Öffnen Sie Ihren Browser.
- 3. Geben Sie in die Adressleiste des Browsers ein: [IP-Adresse des AC•THOR]/setup.jsn?sd_datalogging=1
- 4. Es erscheint eine Seite, auf der alle Einstellungsparameter zu sehen sind.
- 5. Das Datenlogging ist jetzt aktiviert und kann verwendet werden.

Aufgezeichnete Leistungsdaten, Zählerwerte und Temperaturen sind jederzeit einsehbar. Über den "Öffnen" Button können die jeweiligen Werte ausgewählt werden. Per "Kalender" Button sind diese in den drei Ansichten des aktuellen Jahrs, Monats oder Tages darstellbar.

Tippen sie im Diagramm direkt auf die einzelnen Balken um die Daten in der nächsten Detailtiefe darzustellen und auf den Button des Datenloggers um wieder eine Ebene zurück zu gelangen!

Folgende Daten können angezeigt werden:

<u>Leistung gesamt:</u> Zeigt die Summe der Leistungswerte für alle angeschlossenen Lasten. Die orangen Balken zeigen die verwendete PV-Überschussleistung, die pinken Balken den Anteil der Netzenergie bei Verwendung der optionalen Temperatursicherstellung oder beim Legionellenmodus.

Zähler: Zeigt die Werte des gesamten Netzbezugs blau inkl. der Haushaltsverbraucher und der Netzeinspeisung orange am Messpunkt.

Leistung 1: Zeigt die Leistungswerte für Last 1.

<u>Leistung 2:</u> Zeigt die Leistungswerte für Last 2.

<u>Temperatur 1-4:</u> Zeigt die Messwerte der Temperaturfühler.

3.3. Statusinformation am Display

Die Werte aller für den Betrieb relevanten Größen werden in einer Liste angezeigt.

<u>Leistung:</u> Zeigt die aktuelle Leistung des AC•THOR Leistungsteils.

<u>Zähler:</u> Zeigt den aktuellen Wert des Zählers am Messpunkt. Ein positiver Wert bedeutet Netzbezug, ein negativer Netzeinspeisung.

<u>PV:</u> Sofern im Web-Interface unter Setup eine entsprechende Messstelle eingestellt wurde, ist hier der Wert der PV-Leistung verfügbar. Siehe Messwerte-Einstellungen.

<u>Last:</u> Zeigt beim AC•THOR die nominelle Leistung der Last (bei 230V) die gerade vom Leistungsteil versorgt wird. Dieser Wert kann ab einer Leistung von 500 W bestimmt werden. Bei AC•THOR 9s wird an dieser Stelle der Laststatus (0 oder 1) an den drei Ausgängen angezeigt.

Wird trotz angeschlossener Last "keine" bzw. "0" am Ausgang des AC•THOR 9s angezeigt, so kann ein abgeschalteter Thermostat, oder ein ausgelöster Sicherheitstemperaturbegrenzer die Ursache sein.

Temperatur 1: Aktueller Messwert Fühler 1

<u>Temperatur 2:</u> Aktueller Messwert Fühler 2

<u>Temperatur 3:</u> Aktueller Messwert Fühler 3

<u>Temperatur 4:</u> Aktueller Messwert Fühler 4

<u>IP:</u> Zeigt die aktuelle IP-Adresse des AC•THOR.

<u>Ctrl IP:</u> Zeigt die aktuelle IP-Adresse der Signalquelle. Zusätzlich erscheint in der Zeile darunter die Bezeichnung der Signalquelle und der aktuelle Messwert. Ein positiver Wert bedeutet Netzbezug, ein negativer Netzeinspeisung.

<u>Status:</u> Zeigt den aktuellen Gerätestatus. Siehe Kapitel "Statuscodes". Bei AC•THOR 9s besteht die Nummer aus zwei Teilen. Links der Statuscode von Leistungsteil AC•THOR 9s, rechts der Statuscode von Leistungsteil AC•THOR.

Netzspannung: Zeigt die aktuelle Eingangsspannung am AC•THOR (nur bei AC•THOR)

Netzstrom: Zeigt den aktuellen Eingangsstrom am AC•THOR (nur bei AC•THOR)

<u>Ausgangsspannung</u>: Zeigt die aktuelle Ausgangsspannung am AC•THOR (nur bei AC•THOR)

Leistung 1: Aktuelle Leistung am Ausgang Out-1 (nur bei AC•THOR 9s)

<u>Leistung 2:</u> Aktuelle Leistung am Ausgang Out-2 (nur bei AC•THOR 9s)

<u>Leistung 3:</u> Aktuelle Leistung am Ausgang Out-3 (nur bei AC•THOR 9s)

<u>Frequenz:</u> Zeigt die aktuelle Netzfrequenz.

<u>Temperatur Leistungsteil:</u> Zeigt die aktuelle Temperatur der AC•THOR Leistungselektronik.

Lüfter: Zeigt die aktuelle Drehzahlstufe des internen Lüfters.

Seriennummer: Zeigt die Geräteseriennummer.

MAC-Adresse: Zeigt die MAC-Adresse des Geräts.

Version: Zeigt die aktuelle Firmware-Version des Geräts.

Version Leistungsteil: Zeigt die aktuelle Firmware-Version des AC•THOR Leistungsteils.

Bei AC•THOR 9s besteht die Nummer der LT Firmware-Version aus zwei Teilen.

pXXX: Leistungsteil AC•THOR

sXXX: Leistungsteil AC•THOR 9s

<u>Gerätenummer:</u> Zeigt die eingestellte Gerätenummer. Diese ist auch am Homescreen ersichtlich.

<u>Betriebsart:</u> Zeigt die eingestellte Betriebsart (M1 – Mx). Diese ist auch am Homescreen ersichtlich.

<u>Cloud Status:</u> Unabhängig davon, ob der Cloud Modus aktiv ist oder nicht, wird angezeigt ob der Server der my-PV Cloud erreichbar ist. Wird an dieser Stelle die Info "99, Timeout" angezeigt, so senden Sie bitte die 16-stellige Seriennummer an support@my-pv.com.

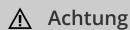
Ethernet (E) Firmware: Zeigt den Updatefortschritt, wenn eine neue Version geladen wird.

<u>Leistungsteil (P) Firmware:</u> Zeigt den Updatefortschritt, wenn eine neue Version geladen wird.

<u>Leistungsteil 9s (S) Firmware:</u> Zeigt den Updatefortschritt, wenn eine neue Version geladen wird.

Relais Status: Zeigt den aktuellen Status des Schaltausganges (0 oder 1) an. Bei AC•THOR 9s ist diese Nummer vierstellig. Die erste Stelle zeigt den Status des Schaltausganges (0 oder 1), die zweite Stelle ob Out-3 geschaltet ist (0 oder 1), die dritte Stelle ob Out-2 geschaltet ist (0 oder 1) und die vierte Stelle zeigt den Ausgang der gerade vom Leistungsteil versorgt wird (1,2 oder 3).

3.4. Einstellungen


Siehe Kapitel "Allgemeine Einstellungen" für allgemeine Geräteeinstellungen, sowie Kapitel "Betriebsarten" für spezifische Einstellungen zur Betriebsart.

3.5. Hilfe

Am Display wird nach der Betätigung eine Kurzinformation zur aktuellen Ansicht angezeigt. Im Web-Interface führt der Button zur online Betriebsanleitung die der jeweils installierten Firmwareversion entspricht.

4. Betriebsarten

Die Verdrahtungspläne zur jeweiligen Betriebsart und zum Anschluss von 3-phasigen Heizstäben finden sie in der dem AC•THOR beiliegenden Montageanleitung, sowie in der aktuellen Version jederzeit auf www.my-pv.com.

4.1. M1: Warmwasser

AC•THOR: Warmwasser mit einem einphasigem Heizstab

AC•THOR 9s: Warmwasser mit einem dreiphasigem Heizstab oder mit 3 einphasigen Heizstäben

☐ TIPP für AC•THOR

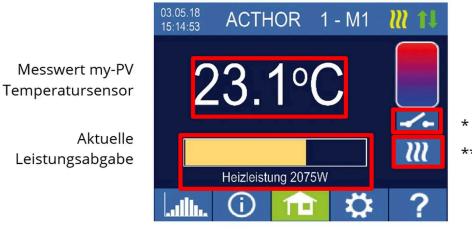
Ein einphasiges Heizelement muss nicht unbedingt 3kW Leistung haben. Selbst verständlich sind auch kleinere Leistungen wie zum Beispiel 2kW möglich!

TIPP für AC•THOR 9s

Ein dreiphasiges Heizelement muss nicht unbedingt 9kW Leistung haben. Es sind auch kleinere Leistungen wie zum Beispiel 4,5kW, 6kW oder 7,5kW möglich! Ebenso gilt bei drei einphasigen Elementen, dass diese auch eine Leistung von weniger als 3kW haben können!

4.1.1. Erklärung

In dieser Betriebsart wird ein elektrischer Heizstab stufenlos mit PV-Überschuss versorgt. Dieser kann mit einem Bimetall-Thermostaten ausgestattet sein um bei Erreichen der darauf eingestellten Temperatur abzuschalten. Andernfalls ist der my-PV Temperatursensor zu verwenden.


Achtung

Beim AC•THOR 9s im Betrieb mit drei einphasigen Heizstäben müssen unbedingt an allen drei Heizstäben Bimetall-Thermostaten vorhanden sein!

Optional kann der AC•THOR auch die Sicherstellung der Warmwassertemperatur übernehmen. Dazu ist der my-PV Temperatursensor zu verwenden.

♠ Achtung

Der my-PV Temperatursensor ist am Speicher in jedem Fall über dem Heizstab anzubringen, um ein brauchbares Messergebnis zu liefern!

Homescreen

- * In der Betriebsart M1 wird der Status des Relais eingeblendet, sofern die Einstellung "Relais bei Wärmeabgabe aktivieren" eingeschaltet ist. Siehe Kapitel "Besondere Einstellmöglichkeiten im Web-Interface".
- ** Single-Boost. Startet einen einmaligen Sicherstellungbetrieb. (Button erscheint nur wenn Sicherstellung aktiviert ist)

Begrenzen sie bei der Warmwassersicherstellung den Bezug von Netzstrom indem sie die Abschaltung bei der Maximaltemperatur umgehen. Stellen sie dazu diesen Wert höher ein als die Abschalttemperatur am Heizstab-Thermostaten und positionieren sie den Fühler zwischen dem Heizstab und der Oberkante des Speichers. So wird bei der Sicherstellung nur das Volumen über dem Fühler bis zur Mindesttemperatur erwärmt, während bei Überschuss der gesamte Inhalt oberhalb des Heizstabs genutzt wird.

4.1.2. Spezifische Einstellungen zur Betriebsart M1

WW 1 Temperaturen

Einstellbar ist die Maximaltemperatur die am my-PV Temperaursensor höchstens erreicht werden darf (werkseitig 60°C). Dies hat nichts mit einem eventuell vorhandenen Bimetall-Thermostaten zu tun!

Wenn die Abschalttemperatur an einem Heizstab mit Bimetall-Thermostat zu niedrig eingestellt ist, kann der AC•THOR möglicherweise die Zieltemperatur nicht erreichen!

Wenn rechts im Fenster die optionale automatische Temperatursicherstellung "Ein" ist (Werkseitig Aus) oder der Relaisausgang gewählt wurde, dann kann auch eine Mindesttemperatur eingestellt werden (werkseitig 50°C).

<u>Automatische Temperatursicherstellung "Ein":</u>

Der AC•THOR kann durch den angeschlossenen Heizstab eine Mindesttemperatur am my-PV Temperatursensor sicherstellen. Dieser wird dabei mit maximaler Leistung versorgt. Dabei kann es zu Strombezug aus dem Netz, oder zur Entladung einer Batterie kommen!

Relaisausgang:

Alternativ kann die Mindesttemperatur auch durch Freigabe einer externen Wärmequelle eingehalten werden. Die Freigabe erfolgt über einen potentialfreien Kontakt. Details zur Verdrahtung des potentialfreien Kontakts entnehmen sie bitte der Montageanleitung im Kapitel "Anschlussbereich".

Diese Option steht nicht zur Verfügung, wenn im Web-Interface die Funktion "Relais bei Wärmeabgabe aktivieren" eingeschaltet ist.

WW 1 min Schaltzeiten

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist, oder der Relaisausgang gewählt wurde.

Es stehen zur Einhaltung der Mindesttemperatur am my-PV Temperatursensor zwei Zeitfenster zur Verfügung. Anfang und Ende können jeweils durch volle Stunden angegeben werden. Werkseitig sind die Schaltzeiten mit 17-23 Uhr und 5-7 Uhr vorgeschlagen.

TIPP

Beschränken sie die Zeiten in denen die Mindesttemperatur eingehalten werden soll auf morgens und abends, um tagsüber ihren PV-Eigenverbrauch zu erhöhen!

Startstunde und Endstunde beziehen sich auf denselben Kalendertag. Wird ein Zeitfenster über Mitternacht definiert, erfolgt keine Warmwasser-Sicherstellung!

Achtung

Liegt die eingestellte Startstunde nach der Endstunde, erfolgt keine Warmwasser-Sicherstellung!

WW 1 min Wochentage

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist, oder der Relaisausgang gewählt wurde.

Die Auswahl der Wochentage an denen die Mindesttemperatur eingehalten werden soll kann vorgenommen werden. Werkseitig sind alle Wochentage aktiviert.

Legionellenprogramm

Zur Sicherstellung der Trinkwasserhygiene kann ein Zeitraum vorgegeben werden, bis zu dem eine einstellbare Mindesttemperatur nach dem letztmaligen Erreichen dieses Wertes erneut erreicht werden muss. Die Anzahl der Tage dieses Zeitraumes ist zwischen 1 und 14 einstellbar. Eine Uhrzeit, zu der das Legionellenprogramm gestartet werden soll, kann vorgegeben werden. Werkseitig lautet die Anzahl der Tage 7, die Startzeit ist 20 Uhr, die Temperatur beträgt 60°C, das Legionellenprogramm ist "Aus".

Der Heizstab wird dabei mit maximaler Leistung versorgt.

Lastpriorität (nur bei AC•THOR 9s)

Legt die Reihenfolge der Ansteuerung der drei Lastausgänge fest.

Out 1–2–3: Standard, für einen dreiphasigen Heizstab.

Out 3–2–1: Für Schichtbetrieb mit drei einphasigen Heizstäben.

Bei Out 3-2-1 unbedingt Reihenfolge der Lastausgänge laut Verdrahtungsplan einhalten!

Sicherstellung-Ausgang (nur bei AC•THOR 9s)

Ist beim AC•THOR 9s die Warmwassersicherstellung aktiviert, so kann festgelegt werden welche Lastausgänge dafür verwendet werden sollen. Werkseitig sind alle drei Ausgänge aktiviert.

TIPP

Werden zum Beispiel 3 einphasige Heizstäbe verwendet, so ist eine Verwendung der Temperatursicherstellung möglicherweise nur am obersten Heizstab notwendig. Dadurch werden Speicherkapazitäten für Energieüberschuss freigehalten wodurch der Autarkiegrad wesentlich verbessert werden kann!

TIPP

Werden bei einem dreiphasigen Heizstab nicht alle drei Ausgänge zur Sicherstellung verwendet, so steht im Falle von Energieüberschuss noch Regelleistung zur Verfügung!

4.1.3. Temperaturfühler (nur bei AC•THOR 9s)

Optional können im Betrieb von drei einphasigen Heizstäben auch drei Temperaturfühler verwendet werden. Die Zuordnung ist dabei umgekehrt zu den Lastausgängen vorzunehmen.

Hinweis: Ein Temperaturfühler liegt dem AC•THOR immer bei, weitere Fühler sind gesondert zu beschaffen.

Lastausgang / Heizstab

Out-3 / Oben

Fühlernummer 1

Lastausgang
/ Heizstab

Out-2 / Mitte

Fühlernummer 2

Lastausgang / Heizstab Out-1 / Unten

Fühlernummer 3

Die Überschussregelung und die Warmwassersicherstellung erfolgt dann für jeden Heizstab individuell, die Einstellungen in "WW 1 Temperaturen" betreffen alle drei Elemente. Sollte nur ein Sensor verwendet werden, schaltet dieser nur den oberen Heizstab ab, die anderen Heizstäbe müssen über Thermostaten gesteuert werden.

4.2. M2: Warmwasser Schichtladung

AC•THOR: Warmwasser mit zwei einphasigen Heizstäben

AC•THOR 9s: Warmwasser mit zwei dreiphasigen Heizstäben

4.2.1. Erklärung

In dieser Betriebsart werden zwei elektrische Heizstäbe in einem Speicher nacheinander stufenlos mit PV-Überschuss versorgt. Vorrang hat dabei der obere Heizstab. Ziel ist es am Zapfpunkt möglichst rasch die gewünschte Temperatur zu erreichen bevor der weitere Überschuss den restlichen Speicherinhalt erwärmt.

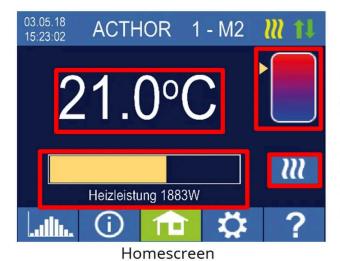
Sobald der obere Heizstab auf Zieltemperatur angekommen ist, wird der untere Heizstab versorgt. Wird kein my-PV Temperatursensor verwendet, so erfolgt die Umschaltung über die Thermostaten der Heizstäbe, der AC•THOR überprüft danach regelmäßig ob der obere Heizstab wieder verfügbar ist. Wird der my-PV Temperatursensor verwendet, so erfolgt die Umschaltung, wenn die Temperatur am Sensor den eingestellten Maximalwert erreicht.

Achtung

Beide Heizstäbe müssen mit einem Bimetall-Thermostaten ausgestattet sein um bei Erreichen der darauf eingestellten Temperatur abzuschalten! Beim AC•THOR erfolgt die Umschaltung zwischen den einphasigen Heizstäben direkt über das integrierte Relais (siehe Verdrahtungsplan). Beim AC•THOR 9s betätigt das Relais einen dreipoligen Öffner und einen dreipoligen Schließer (siehe Verdrahtungsplan), welche dann in weiterer Folge die Umschaltung der dreiphasigen Heizstäbe vornehmen.

TIPP

Es ist auch möglich zwei Heizstäbe in verschiedenen Speichern anzusteuern. Der "obere" Heizstab befindet sich dann beispielsweise in einem Trinkwasserspeicher, der "untere" Heizstab in einem Pufferspeicher daneben. Der Temperaturfühler ist jedoch unbedingt erforderlich und muss oberhalb des "oberen" Heizelements angebracht werden!


Optional kann der AC•THOR am oberen Heizstab auch die Sicherstellung der Warmwassertemperatur übernehmen. Dazu ist der my-PV Temperatursensor zu verwenden.

Achtung

Der my-PV Temperatursensor ist am Speicher in jedem Fall über dem oberen Heizstab anzubringen um ein brauchbares Messergebnis zu liefern!

Messwert my-PV Temperatursensor

Aktuelle Leistungsabgabe

Pfeil zeigt welcher Heizstab gerade versorgt wird. (oben oder unten)

Single-Boost Startet einen einmaligen Sicherstellungbetrieb (Button erscheint nur wenn Sicherstellung aktiviert ist)

4.2.2. Spezifische Einstellungen zur Betriebsart M2

WW 1 Temperaturen

Wenn die Abschalttemperatur an einem Heizstab mit Bimetall-Thermostat zu niedrig eingestellt ist, kann der AC•THOR möglicherweise die Zieltemperatur nicht erreichen!

Wenn rechts im Fenster die optionale automatische Temperatursicherstellung "Ein" ist (Werkseitig Aus), dann kann auch eine Mindesttemperatur eingestellt werden (werkseitig 50°C).

Automatische Temperatursicherstellung "Ein":

Der AC•THOR kann durch den oberen Heizstab eine Mindesttemperatur am my-PV Temperatursensor sicherstellen. Dieser wird dabei mit maximaler Leistung versorgt. Dabei kann es zu Strombezug aus dem Netz, oder zur Entladung einer Batterie kommen!

WW 1 min Schaltzeiten

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist.

Es stehen zur Einhaltung der Mindesttemperatur am my-PV Temperatursensor zwei Zeitfenster zur Verfügung. Anfang und Ende können jeweils durch volle Stunden angegeben werden. Werkseitig sind die Schaltzeiten mit 17-23 Uhr und 5-7 Uhr vorgeschlagen.

TIPP

Beschränken sie die Zeiten in denen die Mindesttemperatur eingehalten werden soll auf morgens und abends, um tagsüber ihren PV-Eigenverbrauch zu erhöhen!

Achtung

Startstunde und Endstunde beziehen sich auf denselben Kalendertag. Wird ein Zeitfenster über Mitternacht definiert, erfolgt keine Warmwasser-Sicherstellung!

Liegt die eingestellte Startstunde nach der Endstunde, erfolgt keine Warmwasser-Sicherstellung!

WW 1 min Wochentage

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist.

Die Auswahl der Wochentage an denen die Mindesttemperatur eingehalten werden soll kann vorgenommen werden. Werkseitig sind alle Wochentage aktiviert.

Legionellenprogramm

Zur Sicherstellung der Trinkwasserhygiene kann ein Zeitraum vorgegeben werden, bis zu dem eine einstellbare Mindesttemperatur nach dem letztmaligen Erreichen dieses Wertes erneut erreicht werden muss. Die Anzahl der Tage dieses Zeitraumes ist zwischen 1 und 14 einstellbar. Eine Uhrzeit, zu der das Legionellenprogramm gestartet werden soll, kann vorgegeben werden. Werkseitig lautet die Anzahl der Tage 7, die Startzeit ist 20 Uhr, die Temperatur beträgt 60°C, das Legionellenprogramm ist "Aus".

Der obere Heizstab wird dabei mit maximaler Leistung versorgt.

Sicherstellung-Ausgang (nur bei AC•THOR 9s)

Ist beim AC•THOR 9s die Warmwassersicherstellung aktiviert, so kann festgelegt werden welche Lastausgänge dafür verwendet werden sollen. Werkseitig sind alle drei Ausgänge aktiviert.

TIPP

Werden bei einem dreiphasigen Heizstab nicht alle drei Ausgänge zur Sicherstellung verwendet, so steht im Falle von Energieüberschuss noch Regelleistung zur Verfügung!

4.3. M3: Warmwasser 6kW/18kW

AC•THOR: Warmwasser 6kW AC•THOR 9s: Warmwasser 18kW

Beim AC•THOR 9s wird von zwei dreiphasigen Lasten ausgegangen, drei einphasige Lasten sind in dieser Betriebsart nicht zulässig!

TIPP

In dieser Betriebsart ist ausdrücklich empfohlen sowohl die AC•THOR Steuerung, als auch die Leistungsmessung an der geschalten Last, jeweils mit einem my-PV Meter auszuführen!

4.3.1. Erklärung

In dieser Betriebsart werden zwei elektrische Heizstäbe mit PV-Überschuss versorgt. Einer davon kann stufenlos geregelt werden, der zweite wird eingeschaltet sobald dafür ausreichend Überschuss verfügbar ist. Ist das der Fall, dann beginnt der erste Heizstab wieder von 0 mit der Leistungsregelung. Der Gesamtregelbereich wird dadurch erweitert.

Der my-PV Temperatursensor ist zu verwenden.

Es gibt zwei Betriebsmöglichkeiten:

Es kann ein fester Schwellwert eingestellt werden, ab dem die zweite Last zugeschaltet wird.

Geschaltet wird tatsächlich aber erst, wenn der Überschuss bzw. die Leistungsvorgabe 10% höher ist als der eingestellte Schwellwert. Außerdem gibt es vor dem Schalten eine Verzögerung von einigen Sekunden damit sichergestellt ist, dass auch stabile Bedingungen herrschen.

Die Einstellung dieses Schwellwerts erfolgt im Web-Interface. Siehe Kapitel "Besondere Einstellmöglichkeiten im Web-Interface".

♠ Achtung

Das erstmalige Zuschalten des Relais erfolgt, wenn ein Überschussniveau von 3kW beim AC•THOR bzw. 9kW beim AC•THOR 9s überschritten wird!

Alternativ kann zur Leistungsmessung der geschalteten Last ein my-PV Meter verwendet werden. Siehe Kapitel "Lastmessung an Relais mit my-PV Meter (empfohlen)".

Die am Relais geschaltete Leistung darf nicht größer sein, als die vom AC•THOR regelbare Leistung. Andernfalls wäre ein instabiles Regelverhalten zu erwarten. Fehler 106 wird angezeigt!

Achtung

Fremde Ansteuerungs-Typen sind unter Umständen nicht in der Lage die Leistung bis 6kW/18kW vorzugeben!

Achtung

Wird an der geschalteten Last kein my-PV Meter zur Leistungsmessung verwendet, so kann die Leistungsanzeige des AC•THOR und die Energieaufzeichnung des Datenloggers diesen Verbrauch nicht berücksichtigen!

Achtung

Für Fremdansteuerung per "Modbus TCP", "http" oder "SMA Home Manager" (nicht "SMA Direkte Zähler Kommunikation") gilt: Ein AC•THOR ohne verfügbare Last am regelbaren Ausgang, kann in der Betriebsart M3 nicht fremdgesteuert werden. Da die Last am Relais nicht regelbar ist, wäre ein instabiles Regelverhalten zu erwarten! Dies gilt auch wenn an der geschalteten Last ein my-PV Meter zur Leistungsmessung verwendet wird!

Mehrere Geräte (Multi-Mode): Ein Slave ohne verfügbare Last am regelbaren Ausgang, kann in der Betriebsart M3 im Multi-Mode nicht gesteuert werden. Da die Last am Relais nicht regelbar ist, wäre ein instabiles Regelverhalten zu erwarten! Dies gilt auch wenn an der geschalteten Last ein my-PV Meter zur Leistungsmessung verwendet wird!

Achtung

Für Frequenzsteuerung gilt: Diese Betriebsart ist für Inselsysteme nicht geeignet. my-PV empfiehlt stattdessen mehrere AC•THORen zur Vergrößerung des Regelbereiches zu verwenden!

Optional kann der AC•THOR auch die Sicherstellung der Warmwassertemperatur übernehmen. Das kann entweder mit beiden Heizstäben oder nur mit dem geschalteten Heizstab erfolgen.

Achtung

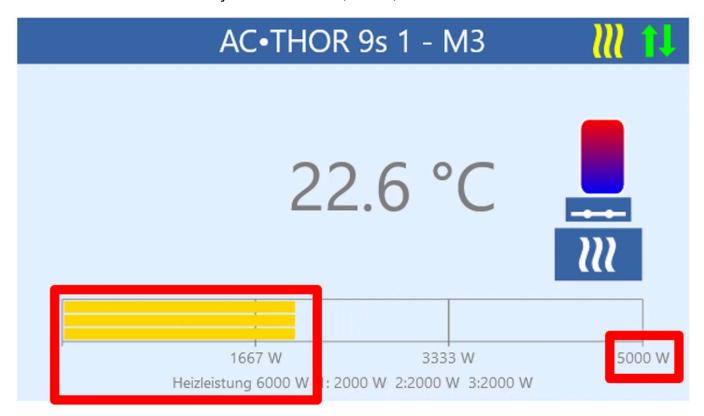
Der my-PV Temperatursensor ist am Speicher in jedem Fall über dem oberen Heizstab anzubringen um ein brauchbares Messergebnis zu liefern!

Relaisstatus
Single-Boost
Startet einen einmaligen
Sicherstellungbetrieb
(Button erscheint nur wenn
Sicherstellung aktiviert ist)

Die Leistungsanzeige wird automatisch um die zusätzliche Leistung skaliert.

4.3.2. Lastmessung an Relais mit my-PV Meter (empfohlen)

Wenn ein my-PV Meter zur Leistungsmessung an der geschalteten Last verwendet wird, dann wird der Verbrauch auch bei der Leistungsanzeige dargestellt und in der Energieaufzeichnung des Datenloggers berücksichtigt.


Die Konfiguration erfolgt im Web-Interface. Siehe Kapitel "Besondere Einstellmöglichkeiten im Web-Interface".

Skalierung der Leistungsanzeige:

- Beim AC•THOR auf 3.000 Watt + Leistungsmessung am Relais
- Beim AC•THOR 9s auf 3.000 Watt + Leistungsmessung am Relais / 3
 Es wird von einer dreiphasigen Last am Relais ausgegangen (siehe Verdrahtungsplan).

Beispiel AC•THOR 9s:

Die Leistung der geschalteten Last wurde mit 6.000 Watt gemessen, das Relais ist geschaltet. Die drei 3kW-Balken werden jeweils um 2kW (6kW/3) erweitert.

Homescreen AC•THOR 9s im Web-Interface

Bei der Lastmessung an Relais mit einem my-PV Meter ist der entsprechende Verdrahtungsplan unbedingt zu einzuhalten!

Achtung

Das erstmalige Zuschalten des Relais erfolgt, wenn ein Überschussniveau von 3kW beim AC•THOR bzw. 9kW beim AC•THOR 9s überschritten wird. Sobald dann ein Messwert der Last vorliegt, wird dieser im weiteren Betrieb als Schaltschwelle berücksichtigt!

Achtung

Sollte sich die Nennleistung an der geschalteten Last zu einem späteren Zeitpunkt reduzieren (beispielweise durch einen Umbau der Anlage), so ist das einmalige Umstellen der Schaltschwelle auf "Last an Relais" nötig. Danach kann die Einstellung wieder auf "Lastmessung an Relais mit my-PV Meter" geändert werden. Siehe Kapitel "Besondere Einstellmöglichkeiten im Web-Interface".

4.3.3. Spezifische Einstellungen zur Betriebsart M3

WW 1 Temperaturen

Einstellbar ist die Maximaltemperatur die am my-PV Temperaursensor höchstens erreicht werden darf (werkseitig 60°C). Dies hat nichts mit einem eventuell vorhandenen Bimetall-Thermostaten zu tun!

Achtung

Wenn die Abschalttemperatur an einem Heizstab mit Bimetall-Thermostat zu niedrig eingestellt ist, kann der AC•THOR möglicherweise die Zieltemperatur nicht erreichen!

Wenn rechts im Fenster die optionale automatische Temperatursicherstellung "Ein" ist (Werkseitig Aus), dann kann auch eine Mindesttemperatur eingestellt werden (werkseitig 50°C).

<u>Automatische Temperatursicherstellung "Ein":</u>

Der AC•THOR kann durch beide Heizstäbe eine Mindesttemperatur am my-PV Temperatursensor sicherstellen. Diese werden dabei mit maximaler Leistung versorgt. Dabei kann es zu Strombezug aus dem Netz, oder zur Entladung einer Batterie kommen!

Relaisausgang:

Alternativ kann die Mindesttemperatur auch <u>nur</u> vom geschalteten Heizstab am Relais eingehalten werden. Dabei kann es zu Strombezug aus dem Netz, oder zur Entladung einer Batterie kommen!

TIPP

Der Sicherstellungsmodus "Relais" hat den Vorteil, dass der untere Speicherbereich für PV-Überschuss "frei" bleibt und tendenziell weniger Energie zur Temperatursicherstellung nötig ist.

WW 1 min Schaltzeiten

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist.

Es stehen zur Einhaltung der Mindesttemperatur am my-PV Temperatursensor zwei Zeitfenster zur Verfügung. Anfang und Ende können jeweils durch volle Stunden angegeben werden. Werkseitig sind die Schaltzeiten mit 17-23 Uhr und 5-7 Uhr vorgeschlagen.

TIPP

Beschränken sie die Zeiten in denen die Mindesttemperatur eingehalten werden soll auf morgens und abends, um tagsüber ihren PV-Eigenverbrauch zu erhöhen!

Startstunde und Endstunde beziehen sich auf denselben Kalendertag. Wird ein Zeitfenster über Mitternacht definiert, erfolgt keine Warmwasser-Sicherstellung!

Achtung

Liegt die eingestellte Startstunde nach der Endstunde, erfolgt keine Warmwasser-Sicherstellung!

WW 1 min Wochentage

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist.

Die Auswahl der Wochentage an denen die Mindesttemperatur eingehalten werden soll kann vorgenommen werden. Werkseitig sind alle Wochentage aktiviert.

Legionellenprogramm

Zur Sicherstellung der Trinkwasserhygiene kann ein Zeitraum vorgegeben werden, bis zu dem eine einstellbare Mindesttemperatur nach dem letztmaligen Erreichen dieses Wertes erneut erreicht werden muss. Die Anzahl der Tage dieses Zeitraumes ist zwischen 1 und 14 einstellbar. Eine Uhrzeit, zu der das Legionellenprogramm gestartet werden soll, kann vorgegeben werden. Werkseitig lautet die Anzahl der Tage 7, die Startzeit ist 20 Uhr, die Temperatur beträgt 60°C, das Legionellenprogramm ist "Aus".

Die Heizstäbe werden dabei mit maximaler Leistung versorgt.

4.4. M4: Warmwasser + Wärmepumpe

AC•THOR: Warmwasser mit einem einphasigem Heizstab AC•THOR 9s: Warmwasser mit einem dreiphasigem Heizstab

4.4.1. Erklärung

In dieser Betriebsart wird der elektrische Heizstab einer Wärmepumpe stufenlos mit PV-Überschuss versorgt. Dieser <u>kann</u> mit einem Bimetall-Thermostaten ausgestattet sein um bei Erreichen der darauf eingestellten Temperatur abzuschalten. Andernfalls ist der my-PV Temperatursensor zu verwenden.

Der my-PV Temperatursensor ist am Speicher in jedem Fall über dem Heizstab anzubringen um ein brauchbares Messergebnis zu liefern!

Bei Überschreiten einer bestimmten Überschuss-Leistungsschwelle wird dann der Betrieb der Wärmepumpe freigegeben. Dieser Schwellwert ist einstellbar. Ebenso eine Mindestzeit für die diese Schwelle überschritten sein muss. Zeitgleich mit dem Wärmepumpenbetrieb kann die weitere Überschussleitung durch den AC•THOR an den Heizstab abgegeben werden. Werkseitig ist diese Einstellung aktiviert.

Nachdem die definierte Überschuss-Leistungsschwelle eine bestimmte Zeit überschritten wurde (t P>) startet die Wärmepumpe für die Mindestbetriebszeit (t run). Dabei kann es auch zu Netzbezug kommen!

Nach Ablauf der Mindestbetriebszeit bleibt die Wärmepumpe freigegeben, sofern noch Überschuss zur Verfügung steht und die Zieltemperatur am my-PV Temperatursensor noch nicht erreicht worden ist. Wenn es dabei zu einem Abfall des PV-Überschusses kommt, so wird die Freigabe der Wärmepumpe erst nach 60 Sekunden aufgehoben.

Nach dem Ende der Wärmepumpenfreigabe wird diese für einen einstellbaren Zeitrahmen (t wait) nicht mehr aktiviert.

Optional kann der AC•THOR auch die Sicherstellung der Warmwassertemperatur übernehmen. Diese erfolgt durch Freigabe der Wärmepumpe, der Heizstab wird dabei weiterhin stufenlos mit Überschuss versorgt.

Achtung

Die Zieltemperatur der Wärmepumpensteuerung darf nicht unterhalb der AC•THOR Mindesttemperatur eingestellt sein, da diese dadurch nicht mehr sichergestellt werden kann!

Messwert my-PV Temperatursensor

Aktuelle Leistungsabgabe

Zeitabschnitt und
Zeitzählerwert der WP
Ansteuerung
Single-Boost
Startet einen einmaligen
Sicherstellungbetrieb
(Button erscheint nur wenn
Relaisausgang aktiviert ist)

4.4.2. Spezifische Einstellungen zur Betriebsart M4

WW 1 Temperaturen

Einstellbar ist die Maximaltemperatur die am my-PV Temperaursensor höchstens erreicht werden darf (werkseitig 60

Achtung

Wenn die Abschalttemperatur an einem Heizstab mit Bimetall-Thermostat zu niedrig eingestellt ist, kann der AC•THOR möglicherweise die Zieltemperatur nicht erreichen!

Wenn rechts im Fenster die optionale automatische Temperatursicherstellung mit Relaisausgang gewählt wurde, dann kann auch eine Mindesttemperatur eingestellt werden (werkseitig 50°C).

Relaisausgang:

Der AC•THOR kann die Mindesttemperatur am my-PV Temperatursensor auch durch Freigabe der Wärmepumpe einhalten.

WW 1 min Schaltzeiten

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" der Relaisausgang gewählt wurde.

Es stehen zur Einhaltung der Mindesttemperatur am my-PV Temperatursensor zwei Zeitfenster zur Verfügung. Anfang und Ende können jeweils durch volle Stunden angegeben werden. Werkseitig sind die Schaltzeiten mit 17-23 Uhr und 5-7 Uhr vorgeschlagen.

Q TIPP

Beschränken sie die Zeiten in denen die Mindesttemperatur eingehalten werden soll auf morgens und abends, um tagsüber ihren PV-Eigenverbrauch zu erhöhen!

Achtung

Startstunde und Endstunde beziehen sich auf denselben Kalendertag. Wird ein Zeitfenster über Mitternacht definiert, erfolgt keine Warmwasser-Sicherstellung!

Achtung

Liegt die eingestellte Startstunde nach der Endstunde, erfolgt keine Warmwasser-Sicherstellung!

WW 1 min Wochentage

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" der Relaisausgang gewählt wurde.

Die Auswahl der Wochentage an denen die Mindesttemperatur eingehalten werden soll kann vorgenommen werden. Werkseitig sind alle Wochentage aktiviert.

Legionellenprogramm

Zur Sicherstellung der Trinkwasserhygiene kann ein Zeitraum vorgegeben werden, bis zu dem eine einstellbare Mindesttemperatur nach dem letztmaligen Erreichen dieses Wertes erneut erreicht werden muss. Die Anzahl der Tage dieses Zeitraumes ist zwischen 1 und 14 einstellbar. Eine Uhrzeit, zu der das Legionellenprogramm gestartet werden soll, kann vorgegeben werden. Werkseitig lautet die Anzahl der Tage 7, die Startzeit ist 20 Uhr, die Temperatur beträgt 60°C, das Legionellenprogramm ist "Aus".

Dabei wird die Wärmepumpe freigegeben, der Heizstab bleibt im Überschussbetrieb.

Schalt-Schwellen

Leistungsschwelle wird erst nach dem Ende des laufenden Ansteuerungszyklus oder nach dem AC•THOR Neustart wirksam.

Optional kann rechts im Fenster die zeitgleiche Regelung des AC•THOR Lastausgangs deaktiviert werden.

Schalt-Verzögerung

Es wird ein Zeitrahmen in Minuten festgelegt (t P>), während dem die obige Schaltschwelle mindestens überschritten worden sein muss bevor die Wärmepumpe freigegeben wird. Werkseitig sind 15 Minuten vorgeschlagen. Anschließend kann eine Mindestbetriebsdauer (t run) und eine Mindestpausendauer (t wait) für die Wärmepumpe eingestellt werden. Werkseitig sind jeweils 30 Minuten vorgeschlagen.11

4.5. M5: Warmwasser + Raumheizung

AC•THOR: Warmwasser + ein Heizkreis

AC•THOR 9s: Warmwasser + zwei Heizkreise

Hinweis für AC•THOR 9s ab Ethernet-Firmware-Version a0020806

Gegenüber bisherigen Versionen gibt es nun folgenden Vorteil: Wenn bei Raumheizung 1 (Ausgang Out-1) eine Mindesttemperatur mit maximaler Leistung sichergestellt werden muss, dann kann der AC•THOR 9s währenddessen nun trotzdem an den Ausgängen Out-2 (Raumheizung 2) oder Out-3 (Warmwasser) Leistung regeln, sofern an diesen die Zieltemperatur noch nicht erreicht ist und noch Überschuss vorhanden ist.

Ab Version a0020806 ist dazu ein 2-poliger Wechsler in der Installation vorzusehen, der durch den potentialfreien Kontakt des AC•THOR 9s betätigt wird.

Die Details der Verdrahtung entnehmen sie bitte der dem Gerät beiliegenden Montageanleitung. Außerdem finden sie die aktuellen Informationen jederzeit auf www.my-pv.com.

Anmerkung: An bereits installierten Geräten die in der Betriebsart M5 verwendet werden, ändert ein Firmware-Update nichts an der bisherigen Betriebsweise.

4.5.1. Erklärung

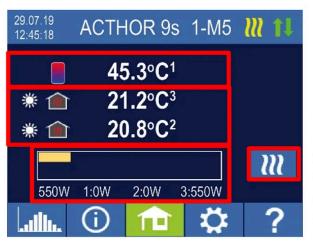
Diese Betriebsart ist für Objekte mit elektrischer Warmwasserbereitung und elektrischer Raumheizung vorgesehen. Dabei werden elektrische Wärmequellen nacheinander stufenlos mit PV-Überschuss versorgt. Vorrang hat dabei der Heizstab zur Warmwasserbereitung. Sobald die Warmwasser-Zieltemperatur am jeweiligen my-PV Temperatursensor erreicht ist, wird in weiterer Folge die elektrische Raumheizung versorgt, bis auch hier der Zielwert am my-PV Temperatursensor erreicht ist.

Optional kann der AC•THOR auch die Sicherstellung der Warmwassertemperatur übernehmen.

Beim AC•THOR sind zwei my-PV Temperaturfühler erforderlich!
Beim AC•THOR 9s sind drei my-PV Temperaturfühler erforderlich!
Hinweis: Ein Temperaturfühler liegt dem AC•THOR immer bei, weitere Fühler sind gesondert zu beschaffen.

Achtung

Am Warmwasserspeicher ist der erste my-PV Temperatursensor in jedem Fall über dem Heizstab anzubringen um ein brauchbares Messergebnis zu liefern!


Achtung

Zur Regelung der Raumwärme ist der jeweilige my-PV Temperatursensor an geeigneter Stelle anzubringen um ein brauchbares Messergebnis zu liefern!

Q TIPP

Soll vermieden werden, dass im Zuge der Sicherstellung der Raumtemperatur Strom aus dem öffentlichen Netz bezogen wird, dann können die Mindestwerte für Tag und Nacht einfach entsprechend niedrig vorgegeben werden. Siehe Erklärung "RH 1 Temperaturen".

Messwerte my-PV
Temperatursensoren
Wassertemperatur
Raumtemperatur 2
Raumtemperatur 1
(Sonne = Tagbetrieb)
Aktuelle
Leistungsabgabe

Single-Boost
Startet eine einmalige
Warmwassersicherstellung
(Button erscheint nur wenn
Sicherstellung aktiviert ist)

Homescreen

Am Display zeigt ein Symbol von Sonne oder Mond welcher Zeitabschnitt der Raumtemperaturregelung gerade vorherrscht. Für Tag und Nacht können unterschiedliche Mindesttemperaturen vorgegeben werden.

4.5.2. Spezifische Einstellungen zur Betriebsart M5

WW 1 Temperaturen

Einstellbar ist die Maximaltemperatur die am my-PV Temperaursensor 1 höchstens erreicht werden darf (werkseitig 60°C). Dies hat nichts mit einem eventuell vorhandenen Bimetall-Thermostaten zu tun!

Achtung

Wenn die Abschalttemperatur an einem Heizstab mit Bimetall-Thermostat zu niedrig eingestellt ist, kann der AC•THOR möglicherweise die Zieltemperatur nicht erreichen!

Wenn rechts im Fenster die optionale automatische Temperatursicherstellung "Ein" ist (Werkseitig Aus), dann kann auch eine Mindesttemperatur eingestellt werden (werkseitig 50°C).

<u>Automatische Temperatursicherstellung "Ein":</u>

Der AC•THOR kann durch den angeschlossenen Heizstab eine Mindesttemperatur am my-PV Temperatursensor 1 sicherstellen. Dieser wird dabei mit maximaler Leistung ersorgt. Dabei kann es zu Strombezug aus dem Netz, oder zur Entladung einer Batterie kommen!

WW 1 min Schaltzeiten

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist.

Es stehen zur Einhaltung der Mindesttemperatur am my-PV Temperatursensor 1 zwei Zeitfenster zur Verfügung. Anfang und Ende können jeweils durch volle Stunden angegeben werden. Werkseitig sind die Schaltzeiten mit 17-23 Uhr und 5-7 Uhr vorgeschlagen.

TIPP

Beschränken sie die Zeiten in denen die Mindesttemperatur eingehalten werden soll auf morgens und abends, um tagsüber ihren PV-Eigenverbrauch zu erhöhen!

Achtung

Startstunde und Endstunde beziehen sich auf denselben Kalendertag. Wird ein Zeitfenster über Mitternacht definiert, erfolgt keine Warmwasser-Sicherstellung!

Achtung

Liegt die eingestellte Startstunde nach der Endstunde, erfolgt keine Warmwasser-Sicherstellung!

WW 1 min Wochentage

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist.

Die Auswahl der Wochentage an denen die Mindesttemperatur eingehalten werden soll kann vorgenommen werden. Werkseitig sind alle Wochentage aktiviert.

Legionellenprogramm

Zur Sicherstellung der Trinkwasserhygiene kann ein Zeitraum vorgegeben werden, bis zu dem eine einstellbare Mindesttemperatur nach dem letztmaligen Erreichen dieses Wertes erneut erreicht werden muss. Die Anzahl der Tage dieses Zeitraumes ist zwischen 1 und 14 einstellbar. Eine Uhrzeit, zu der das Legionellenprogramm gestartet werden soll, kann vorgegeben werden. Werkseitig lautet die Anzahl der Tage 7, die Startzeit ist 20 Uhr, die

Temperatur beträgt 60°C, das Legionellenprogramm ist "Aus". Der Heizstab wird dabei mit maximaler Leistung versorgt.

RH 1 Temperaturen (bei AC•THOR 9s RH 1 und RH 2)

Einstellbar ist die Raum-Maximaltemperatur die an den my-PV Temperaursensoren 2 bzw. 3 (Sensor 1 ist für Warmwasser) höchstens erreicht werden darf (werkseitig 22°C), sowie die Mindesttemperaturen die in den Zeitabschnitten Tag und Nacht eingehalten werden sollen (werkseitig jeweils 20°C).

RH 1 Schaltzeiten (bei AC•THOR 9s RH 1 und RH 2)

Anfang und Ende des Nacht-Zeitrahmens sind jeweils mit Stunden und Minuten einstellbar. Werkseitig ist die Zeit zwischen 22:00 und 05:00 Uhr vorgeschlagen. Diese Einstellung kann für alle Wochentage durch entsprechende Auswahl am Button neben der Zeit beliebig vorgenommen werden (MO-SO, MO-FR, SA-SO).

4.5.3. Temperaturfühler

Fühlerzuordnung AC•THOR:

Verwendung	Warmwasser
Fühlernummer	1
Verwendung	Space heating
Fühlernummer	2

Fühlerzuordnung AC•THOR 9s:

Die Überschussregelung und die Sicherstellung erfolgt dann für jeden Lastausgang individuell.

Lastausgang / Verwendung	Out-3 / Warmwasser
Sensor numb	1

Lastausgang Out-2 / Raumheizung 2

Verwendung

Sensor 3 numb

Lastausgang Out-1 / Raumheizung 1

/

Verwendung

Sensor 2

numb

4.6. M6: Raumheizung

AC•THOR: ein Heizkreis

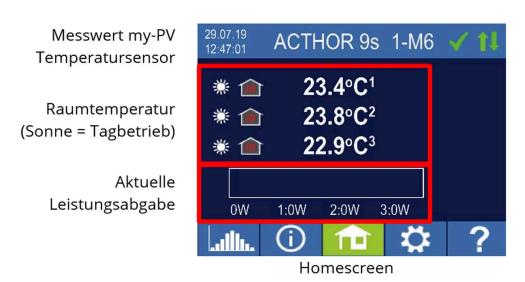
AC•THOR 9s: drei Heizkreise

4.6.1. Erklärung

In dieser Betriebsart wird eine elektrische Raumheizung stufenlos mit PV-Überschuss versorgt.

Beim AC•THOR ist ein my-PV Temperaturfühler erforderlich!

Beim AC•THOR 9s sind drei my-PV Temperaturfühler erforderlich!


Hinweis: Ein Temperaturfühler liegt dem AC•THOR immer bei, weitere Fühler sind gesondert zu beschaffen.

Achtung

Zur Regelung der Raumwärme ist der jeweilige my-PV Temperatursensor an geeigneter Stelle anzubringen um ein brauchbares Messergebnis zu liefern!

Q TIPP

Soll vermieden werden, dass im Zuge der Sicherstellung der Raumtemperatur Strom aus dem öffentlichen Netz bezogen wird, dann können die Mindestwerte für Tag und Nacht einfach entsprechend niedrig vorgegeben werden. Siehe Erklärung "RH 1 Temperaturen".

Am Display zeigt ein Symbol von Sonne oder Mond welcher Zeitabschnitt der Raumtemperaturregelung gerade besteht. Für Tag und Nacht können unterschiedliche Mindesttemperaturen vorgegeben werden.

4.6.2. Spezifische Einstellungen zur Betriebsart M6

RH 1 Temperaturen (bei AC•THOR 9s RH 1, RH 2 und RH 3)

Einstellbar ist die Raum-Maximaltemperatur die an den my-PV Temperaursensoren höchstens erreicht werden darf (werkseitig 22°C), sowie die Mindesttemperaturen die in den Zeitabschnitten Tag und Nacht eingehalten werden sollen (werkseitig jeweils 20°C).

RH 1 Schaltzeiten (bei AC•THOR 9s RH 1, RH 2 und RH 3)

Anfang und Ende des Nacht-Zeitrahmens sind jeweils mit Stunden und Minuten einstellbar. Werkseitig ist die Zeit zwischen 22:00 und 05:00 Uhr vorgeschlagen. Diese Einstellung kann für alle Wochentage durch entsprechende Auswahl am Button neben der Zeit beliebig vorgenommen werden (MO-SO, MO-FR, SA-SO).

4.6.3. Temperaturfühler

Fühlerzuordnung AC•THOR:

Verwendung Raumheizung

Fühlernummer 1

Fühlerzuordnung AC•THOR 9s:

Die Überschussregelung und die Sicherstellung erfolgt dann für jeden Lastausgang individuell.

Lastausgang Out-3 / Raumheizung 3

Verwendung

Fühlernummer 3

Lastausgang Out-2 / Raumheizung 2

/

Verwendung

Fühlernummer 2

Lastausgang Out-1 / Raumheizung 1

/

Verwendung

Fühlernummer 1

4.7. M7: Warmwasser + PWM

AC•THOR: Warmwasser mit einem einphasigem Heizstab

AC•THOR 9s: Warmwasser mit einem dreiphasigem Heizstab

Achtung

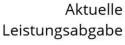
Bei der Ansteuerung durch Modbus RTU kann die Betriebsart M7 nicht verwendet werden!

4.7.1. Erklärung

In dieser Betriebsart wird ein elektrischer Heizstab stufenlos mit PV-Überschuss versorgt. Zusätzlich kann der AC•THOR ein temperaturabhängiges PWM Signal ausgeben. Damit kann die Drehzahl einer Pumpe geregelt werden.

Diese Funktion wurde von my-PV mit der Pumpentypen **Wilo Para PWM1 und PWM2** und **Wilo Varios PICO-STG** getestet. Für PWM2 ist im Web-interface in der URL der Einstellbefehl xxx.xxx.xxx/setup.jsn**?pwmt=2** vorzunehmen. Für andere Pumpen kann die Funktion nicht bescheinigt werden.

Achtung


In dieser Betriebsart sind zwei my-PV Temperaturfühler erforderlich!

Die Ausgabe des PWM Signals startet bei Erreichen der Zieltemperatur + Hysterese am Sensor 2. Das Signal wird stärker je weiter die Zieltemperatur + Hysterese überschritten wird.

Optional kann der AC•THOR auch die Sicherstellung der Warmwassertemperatur übernehmen. Dazu ist ein dritter my-PV Temperatursensor zu verwenden.

Hinweis: Ein Temperaturfühler liegt dem AC•THOR immer bei, weitere Fühler sind gesondert zu beschaffen.

Status PWM Ausgangssignal

Single-Boost
Startet einen einmaligen
Sicherstellungbetrieb
(Button erscheint nur wenn
Sicherstellung aktiviert ist)

4.7.2. Spezifische Einstellungen zur Betriebsart M7

WW 1 Temperaturen

Achtung

Wenn die Abschalttemperatur an einem Heizstab mit Bimetall-Thermostat zu niedrig eingestellt ist, kann der AC•THOR möglicherweise die Zieltemperatur nicht erreichen!

Wenn rechts im Fenster die optionale automatische Temperatursicherstellung "Ein" ist (Werkseitig Aus) oder der Relaisausgang gewählt wurde, dann kann auch eine Mindesttemperatur eingestellt werden (werkseitig 50°C).

Automatische Temperatursicherstellung "Ein":

Der AC•THOR kann durch den angeschlossenen Heizstab eine Mindesttemperatur am my-PV Temperatursensor sicherstellen. Dieser wird dabei mit maximaler Leistung versorgt. Dabei kann es zu Strombezug aus dem Netz, oder zur Entladung einer Batterie kommen!

Relaisausgang:

Alternativ kann die Mindesttemperatur auch durch Freigabe einer externen Wärmequelle eingehalten werden. Die Freigabe erfolgt über einen potentialfreien Kontakt. Details zur Verdrahtung des potentialfreien Kontakts entnehmen sie bitte der Montageanleitung im Kapitel "Anschlussbereich".

TIPP für AC•THOR (nicht AC•THOR 9s):

Sollte als externe Wärmequelle ein zweiter Heizstab (maximal 3kW) verwendet werden, so kann dieser entsprechend der Verdrahtung für den 6kW Betrieb verbunden werden. Der Unterschied zur 6kW Betriebsart ist, dass hier der zweite Heizstab nur zur Temperatursicherstellung dient und nicht als Erweiterung des normalen Regelbereiches verwendet wird!

WW 1 min Schaltzeiten

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist, oder der Relaisausgang gewählt wurde. Es stehen zur Einhaltung der Mindesttemperatur am my-PV Temperatursensor zwei Zeitfenster zur Verfügung. Anfang und Ende können jeweils durch volle Stunden angegeben werden. Werkseitig sind die Schaltzeiten mit 17-23 Uhr und 5-7 Uhr vorgeschlagen.

TIPP

Beschränken sie die Zeiten in denen die Mindesttemperatur eingehalten werden soll auf morgens und abends, um tagsüber ihren PV-Eigenverbrauch zu erhöhen!

Achtung

Startstunde und Endstunde beziehen sich auf denselben Kalendertag. Wird ein Zeitfenster über Mitternacht definiert, erfolgt keine Warmwasser-Sicherstellung!

Achtung

Liegt die eingestellte Startstunde nach der Endstunde, erfolgt keine Warmwasser-Sicherstellung!

WW 1 min Wochentage

Diese Einstellung ist auswählbar, wenn unter "WW 1 Temperaturen" die Temperatursicherstellung "Ein" ist, oder der Relaisausgang gewählt wurde.

Die Auswahl der Wochentage an denen die Mindesttemperatur eingehalten werden soll kann vorgenommen werden. Werkseitig sind alle Wochentage aktiviert.

Sicherstellung-Ausgang (nur bei AC•THOR 9s)

Ist beim AC•THOR 9s die Warmwassersicherstellung aktiviert, so kann festgelegt werden welche Lastausgänge dafür verwendet werden sollen. Werkseitig sind alle drei Ausgänge aktiviert.

TIPP

Werden bei einem dreiphasigen Heizstab nicht alle drei Ausgänge zur Sicherstellung verwendet, so steht im Falle von Energieüberschuss noch Regelleistung zur Verfügung!

4.8. Frequenzmodus

↑ Ab Ethernet-Firmware-Version a0020400 gilt:

Der Frequenzmodus ist keine separate Betriebsart mehr. Stattdessen ist die Frequenzsteuerung als Signalquelle auswählbar. Somit sind in AC Inselnetzen nun die Betriebsarten M1 bis M7 anwendbar.

Ein Firmware-Update an einem Gerät im "M8 Frequenzmodus" versetzt dieses automatisch in die Betriebsart "M1 Warmwasser" und "Frequenz" wird als Signalquelle eingestellt.

Weitere Informationen siehe Kapitel 7 Frequenzsteuerung.

5. Allgemeine Einstellungen

Spezifische Einstellungen zu den verschiedenen Betriebsarten entnehmen sie bitte dem Kapitel "Betriebsarten". Unter den Einstellungen sind diese am ersten Blatt "Setup 1/X", teilweise auch am zweiten Blatt "Setup 2/X" zugänglich.

Zeitzone: Die Zeitzone für die Uhrzeit ist einstellbar. Zusätzlich ist für Europa die Sommerzeit aktiviert.

<u>Datum:</u> Das Datum kann im Format dd.mm.yy eingestellt werden.

<u>Uhrzeit:</u> Das Datum kann im Format hh:mm:ss eingestellt werden.

NTP Server: (NTP = Network Time Protocol) Sofern über den Router eine Internet-Verbindung besteht, bezieht der AC•THOR die Zeitinformation automatisch aus dem Internet. Es wird dabei allerdings nicht die jeweilige Zeitzone bestimmt. Die NTP-Zeitserver-Adresse kann ggf. geändert werden. Werkseitig lautet diese 131.130.251.107.

Achtung

Bei einer Direktverbindung vom AC•THOR zum my-PV Power Meter besteht keine Internetverbindung. Die Uhrzeit kann entsprechend nicht bezogen werden!

<u>IP DHCP/statisch:</u> Standardmäßig ist DHCP aktiviert, d.h. das Gerät holt sich eine IP Adresse von dem Router, an dem es angeschlossen ist. Dies funktioniert nur, wenn der Router als DHCP Server konfiguriert ist. Sollte kein DHCP Server im Netzwerk aktiv sein oder ist eine statische Vergabe gewünscht, ist eine feste IP Adressierung nötig.

A Achtung

Die Einstellungen müssen dem Router angepasst sein, ansonsten ist das Gerät nicht im Netzwerk sichtbar!

<u>IP Adresse:</u> Nur einstellbar wenn "Statische IP" ausgewählt wurde und keine direkte Verbindung zum my-PV Power Meter besteht.

<u>Subnetz Maske:</u> Nur einstellbar wenn "Statische IP" ausgewählt wurde und keine direkte Verbindung zum my-PV Power Meter besteht.

<u>Gateway Adresse:</u> Nur einstellbar wenn "Statische IP" ausgewählt wurde und keine direkte Verbindung zum my-PV Power Meter besteht.

<u>DNS Server:</u> Nur einstellbar wenn "Statische IP" ausgewählt wurde und keine direkte Verbindung zum my-PV Power Meter besteht.

<u>Display Anzeigendauer:</u> Die Anzahl der Sekunden bis das Display ausgeschaltet wird kann eingestellt werden. Hier kann ein Wert zwischen "10" und "250" Sekunden ausgewählt werden.

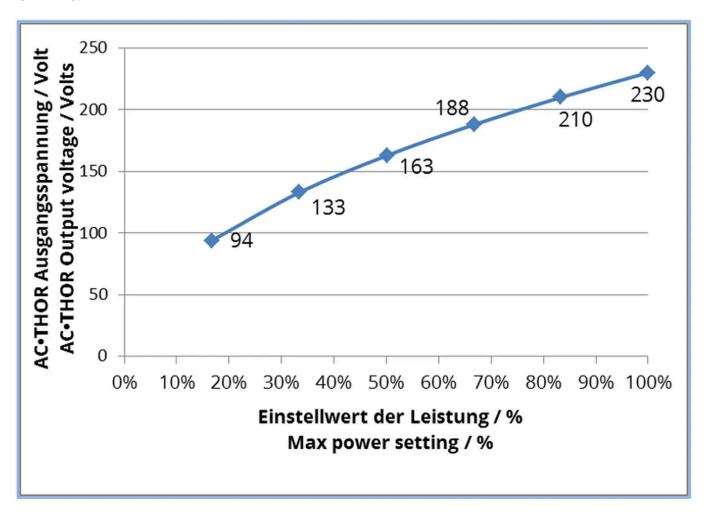
<u>Display Helligkeit:</u> Die Helligkeit des Displays kann in 10 Stufen eingestellt werden.

<u>Logo Helligkeit:</u> Die Helligkeit des beleuchteten AC•THOR Logos am Gerät kann in 10 Stufen eingestellt werden. "0" bedeutet das Logo wird ist ausgeschaltet.

<u>Steuerung:</u> In diesem Abschnitt wird die Auswahl der Ansteuerung des AC•THOR getroffen. Siehe Kapitel "Inbetriebnahme".

<u>Ctrl IP:</u> Die IP Adresse der Signalquelle kann manuell ausgewählt werden. Das ist beispielsweise nötig, wenn sich mehrere kompatible Geräte im Netzwerk befinden und ein bestimmtes davon als Ansteuerungs-Quelle ausgewählt werden soll.

<u>Zielwert der Regelung:</u> Hier wird der Sollwert der Leistung am Messpunkt vorgegeben. Ein negativer Wert bedeutet Netzeinspeisung. Werkseitig ist ein Zielwert von -50 W vorgegeben. Dieser Parameter kann im Bereich zwischen -9999 und +9999 W frei gewählt werden.


<u>Sensoren:</u> Hier erfolgt die Auswahl des Temperatursensors für die Betirebsart. Siehe Kapitel "Inbetriebnahme".

Betriebsart: Detaillierte Beschreibung im Kapitel "Betriebsarten".

<u>Sprache:</u> Neben Deutsch stehen die Sprachen Englisch, Französisch und Spanisch zur Auswahl.

<u>Gerätenummer:</u> Zeigt die eingestellte Gerätenummer. Diese ist auch am Homescreen ersichtlich.

<u>Max. Leistung:</u> Durch diese Einstellung kann die Ausgangsspannung am AC•THOR begrenzt werden. Dadurch ergibt sich ein Abminderungsfaktor von der Nominalleistung der Last, d.h. die tatsächliche maximale Ausgangsleistung hängt von der Nennleistung der Last ab. Die maximale Ausgangsspannung in Abhängigkeit vom Parameter ergibt sich aus nachfolgender Kennlinie:

Der Wert kann am Display zwischen 17 – 100 Prozent eingestellt werden.

Achtung

Diese Einstellung wird in der Betriebsart M3 nicht berücksichtigt.

Achtung

Eine Anpassung ist im Allgemeinen nur erforderlich, wenn die Nenn-Leistung der Last größer als die dem AC•THOR zur Verfügung stehende Leistung ist. (Absicherung, Wechselrichter-Leistung im Frequenz-Modus)

Zugriffsebene (nur bis Firmware-Version a0010103): Je nach Benutzerebene (1 – 3) sind am AC•THOR unterschiedliche Einstellungsmöglichkeiten freigegeben. In Ebene 3 sind alle Einstellungen zugänglich. Werkseitig ist diese Ebene aktiv. Es ist möglich die Einstellmöglichkeiten zu beschränken.

Die Ebene 2 bietet leicht beschränkte Einstellmöglichkeiten für fortgeschrittene Anwender. Nicht veränderbar sind beispielsweise die Einstellungen zur Kommunikation, die Betriebsart, die Grundeinstellungen, Sensorzuordnung oder Regeleinstellungen.

In der Ebene 1 beschränken sich die Einstellmöglichkeiten auf Temperaturvorgabe und Schaltzeiten für die Raumheizung (nur relevant in Betriebsart M5 und M6), sowie auf die Helligkeits- und Anzeigendauereinstellungen des Displays, sowie die Helligkeit des AC•THOR Logos.

Um auf eine höhere Ebene zurück zu gelangen ist ein Passwort erforderlich. Das Passwort für Ebene 2 lautet "1970", das für Ebene 3 "1965".

Zeitablauf Ansteuerung: Mit der Einstellung kann für mehrere Ansteuerungstypen die Nachlaufzeit des AC•THOR (Power Timeout) eingestellt werden.

<u>Hysteresen:</u> Es können Schalthysteresen für Warmwasser und Raumheizung eingestellt werden. Diese bewirken bei der Zieltemperatur keine Überhöhung! Nach dem Erreichen der Zieltemperatur darf der Wert aber um den jeweils eingestellten Betrag abfallen bevor der Heizvorgang wieder gestartet wird.

Warmwasser Maximaltempertaur (werkseitig 3,0 °C) Warmwasser Minimaltemperatur (werkseitig 3,0 °C) Raumheizung Maximaltempertaur (werkseitig 0,5 °C) Raumheizung Minimaltemperatur (werkseitig 0,5 °C)

Prüfe auf neue FW:

Achtung

Internetzugang ist erforderlich!

Updateüberprüfung manuell starten. Wenn eine neue Version verfügbar ist, wird diese auf der SD Karte gespeichert. Dieser Vorgang dauert mehrere Minuten. Während dieser Zeit ist der AC•THOR normal betriebsfähig.

Firmware Update starten: Sofern eine neuere Sofwareversion auf der SD Karte vorliegt kann das Update manuell gestartet werden. Nach dem Update wird automatisch ein Neustart des Geräts durchgeführt.

Power FW Update starten: Sofern eine neuere Leistungsteil-Sofwareversion auf der SD Karte vorliegt kann das Update manuell gestartet werden. Nach dem Update wird automatisch ein Neustart des Geräts durchgeführt. Beim AC•THOR 9s wird dabei das Update für beide Leistungsteile gestartet.

Werkseinstellungen:

Werkseinstellungen: Antippen des Menüpunktes setzt den AC•THOR auf die Werkseinstellungen zurück. Dabei werden alle veränderten Geräteeinstellungen gelöscht! ACHTUNG: Es erfolgt keine Sicherheitsabfrage mehr!

Debug Mode: Zur Analyse von Steuerungsproblemen kann der Debug-Modus in Abstimmung mit support@my-pv.com aktiviert werden.

Cloud Modus / Cloud Verbindung:

Falls gewünscht, kann auf die Einstellungen des AC•THOR auch von außerhalb des lokalen Netzwerks zugegriffen werden. Dazu ist es notwendig das Gerät mit Seriennummer und Device Key in der my-PV Datencloud zu registrieren: https://live.my-pv.com/

Öffnen sie die Webseite und melden sie sich an bzw. registrieren sie sich als neuer User. Bei einer Neuregistrierung erhalten sie ein Email mit einem Bestätigungslink. Falls das Email nicht im Posteingang erscheint, so befindet es sich möglicherweise im Spamordner.

TIPP

Falls Sie aus einer früheren Version der my-PV Datencloud bereits ein Nutzerprofil haben, so ist das in der neuen Cloud weiterhin gültig. Außerdem haben Sie automatisch vollen Zugriff auf alle Geräte, die Sie früher bereits eingebunden haben.

Die Seriennummer und den Device Key finden sie unter Cloud Verbindung.

Sofern zudem der Cloud Modus aktiviert wird, steht Ihnen nach der Anbindung des Geräts an die my-PV Datencloud auch eine Übersicht der aufgezeichneten Betriebsdaten zu Verfügung.

Die Datenübertragung aktivieren Sie unter Cloud Modus.

Datenschutz: Informationen zu den Datenschutzbestimmungen finden sie auf www.mypv.com.

6. Lokales Web-Interface

Das lokale Web-Interface ist eine einzelne HTML-Datei, die nach dem Download lokal gespeichert wird. Danach ist der Internetzugang nicht weiter notwendig.

Es verbindet sich nur innerhalb des lokalen Netzwerks mit dem Gerät, während ein Fernzugriff nur über die Datencloud möglich ist.

Achtung

Das lokale Web-Interface ist zu unterscheiden von der Datencloud https://live.my-pv.com/

TIPP

Das Web-Interface bietet deutlich umfangreichere Einstellmöglichkeiten als das AC•THOR Display!

6.1. Gerätesuche im Netzwerk

Achtung

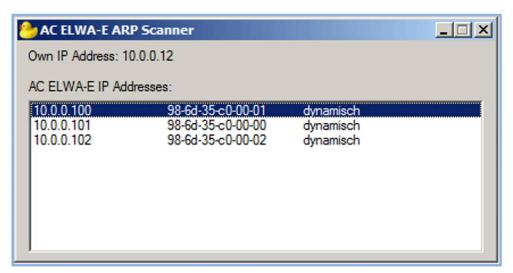
Das Web-Interface ist nur erreichbar, wenn sich der AC•THOR in einem Netzwerk befindet. Im Falle einer direkten Verbindung mit dem Power Meter ist ein Zugriff nicht möglich!

Achtung

Ist der AC•THOR im Netzwerk nicht erreichbar, überprüfen sie die Netzwerkeinstellungen am Display!

geladen und im selben Verzeichnis wie das Scanner-Programm abgelegt.

Achtung


Der Scanvorgang läuft über den UDP Port 16124. Firewalls (oder spezielle Routereinstellungen) können unter Umständen das Auffinden des AC•THORs verhindern.

TIPP

Die IP Adresse des AC•THOR finden sie auch am Display oder in der DHCP Liste des Routers!

Alternativ kann auch das zweite Scanprogramm "Scan AC ELWA-E ARP.exe" verwendet werden welches eine ARP-Abfrage an den Router sendet und die verbundenen my-PV Geräte anzeigt. Da der Router jedoch einige Zeit benötigt um die ARP Tabelle zu aktualisieren kann es sein, dass der ARP-Scan erst einige Zeit nach dem Einschalten der AC ELWA-E Resultate bringt.

Ab Firmware-Version a0020000 ist das Web-Interface des AC•THOR auf eine externe HTML Datei ausgelagert. Wird das Gerät im Webbrowser direkt über die IP-Adresse aufgerufen, so erscheint diese Ansicht.

DE: Ab Version a0020000 erfolgt der Aufruf des AC•THOR Webinterfaces durch eigene HTML Datei, die einmalig lokal gespeichert werden muss.

EN: From Version a0020000 the AC+THOR webinterface is accessed from a separate HTML file that needs to be stored locally once.

FR: À partir de la version a0020000, l'interface web AC•THOR est appelée par son propre fichier HTML, qui doit être enregistré localement une fois.

ES: A partir de la versión a0020000, la interfaz web de AC•THOR es llamada por su propio archivo HTML, que debe ser guardado localmente una vez.

Download Webinterface

DE: Alternativ kann das AC. THOR Webinterface auch direkt im Browser geöffnet werden.

EN: Alternatively, the AC. THOR webinterface can also be opened directly in the browser.

FR: L'interface web de la AC•THOR peut également être ouverte directement dans le navigateur.

ES: Alternativamente, la interfaz web de AC+THOR también puede abrirse directamente en el navegador.

Open Webinterface in Browser

Folgen sie dem Download-Link (oben) und speichern sie die Datei lokal ab, dann öffnen sie die Datei um auf das Web-Interface zu gelangen. Alternativ können sie das Web-Interface auch direkt im Web-Browser öffnen (unterer Link).

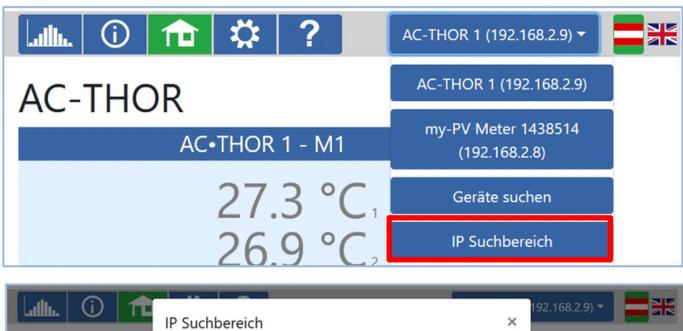
♠ Achtung

my-PV empfiehlt den AC•THOR dem Internet nicht via Port Weiterleitung zugänglich zu machen!

6.2. Anlagen ohne Internetzugang

↑ Ab Ethernet-Firmware-Version a0020000 gilt:

Um in Anlagen ohne Internetzugang auf das Web-Interface des AC•THOR zugreifen zu können laden sie vorab die erforderliche HTML Datei über diesen Link:


http://www.my-pv.com/download/currentversionget.php

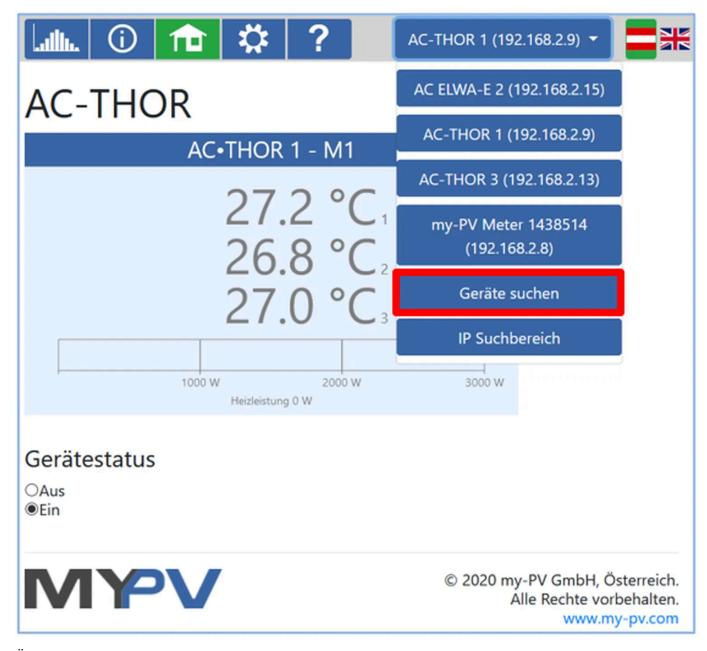
6.3. Web-Interface verbinden

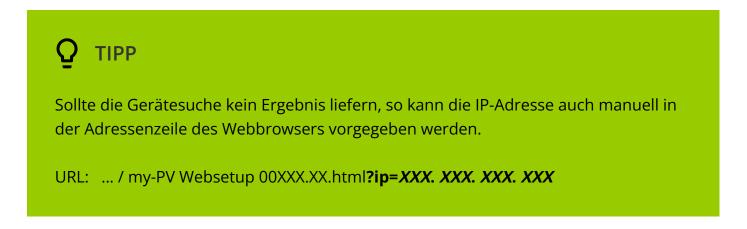
Erfolgt der Start des Web-Interface über das Scanner-Programm (siehe Kapitel "Gerätesuche im Netzwerk"), so wird automatisch die Verbindung zum Gerät hergestellt.

Ab Firmware-Version a0020202 ist mit dem aktuellen Web-Interface neben Deutsch und Englisch auch die Auswahl von Französisch oder Spanisch möglich.

Erfolgt der Start des Web-Interface durch Aufruf der HTML Datei, so ist einmalig der IP-Adressenbereich des Netzwerks einzustellen, in dem sich das Gerät befindet. Die Eingabe wird vom Webbrowser gespeichert, über den Button "IP Suchbereich" kann der Adressenbereich aber jederzeit neu definiert werden.




6.4. Home (Startseite)


Die AC•THOR Startseite bietet im Web-Browser die gleichen Informationen wie der Homescreen am Display. Auch die Navigation über die Symbolleiste erfolgt in gleicher Weise. Weitere Informationen im Kapitel "Bedienungs- und Anzeigenelemente".

Mit Gerätestatus "Aus" kann die Steuerung der Last abgeschaltet werden.

Über eine Schnellauswahl rechts oben kann direkt auf das Web-Interface von anderen my-PV Geräten im Netzwerk zugegriffen werden. Mit dem Button "Geräte suchen" wird im Netzwerk nach my-PV Geräten gescannt.

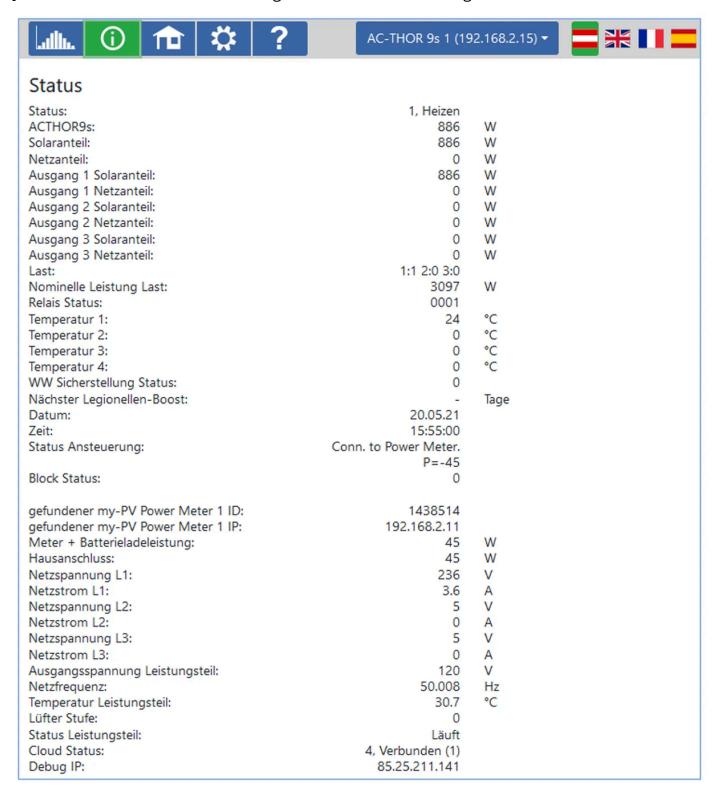
Beachten Sie bitte, dass sich die Darstellung und Einstellmöglichkeiten mit aktuelleren Software-Versionen ändern können.

6.5. Datenlogger

Der AC•THOR Datenlogger bietet im Web-Browser die gleichen Informationen wie der Datenlogger am Display. Die Auswahl der Werte und des Zeitabschnitts ist mittels der Menüleiste über dem Diagramm möglich. Weitere Informationen im Kapitel "Bedienungsund Anzeigenelemente".

Bewegen sie die Maus auf die Balken. Dadurch werden die genauen Zahlenwerte eingeblendet!

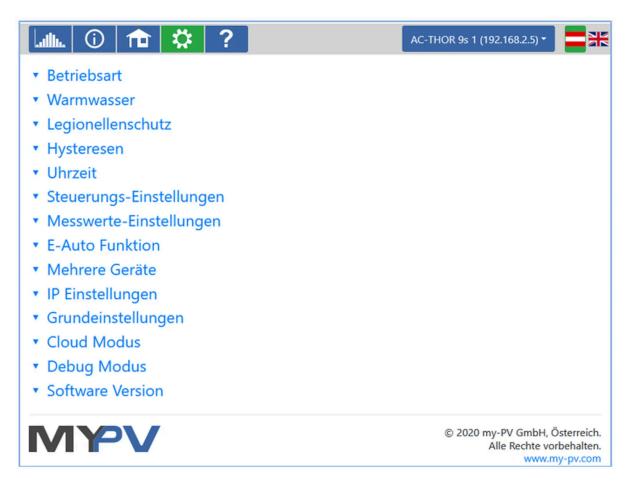
Orange Balken zeigen den Energieanteil der aus der Photovoltaik stammt, rote Balken den Anteil der optionalen Temperatursicherstellung.


6.6. Statusinformation

Die Statusinformation im Web-Browser beinhaltet mehr Details als jene am AC•THOR Display.

Erklärungen finden Sie im Kapitel "Statusinformation am Display".

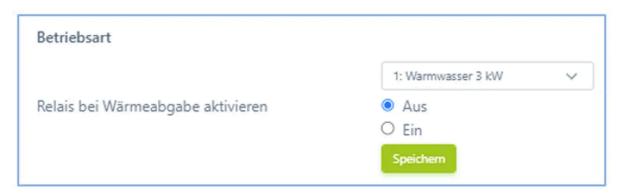
Je nach Betriebsart und Anwendung variiert diese Darstellung.



Die Einstellmöglichkeiten im Web-Browser sind umfangreicher als jene am AC•THOR Display. Siehe nächster Abschnitt "Besondere Einstellmöglichkeiten im Web-Interface".

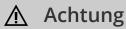
Eine Erklärung der anderen allgemeinen Geräteeinstellungen ist im Kapitel "Allgemeine Einstellungen" einhalten.

Eine Erklärung der anderen spezifischen Geräteeinstellungen für die verschiedenen Betriebsarten ist im Kapitel "Betriebsarten" einhalten.


Die Auswahl der Einstellmöglichkeiten variiert je nach Betriebsart.

6.8. Besondere Einstellmöglichkeiten im Web-Interface

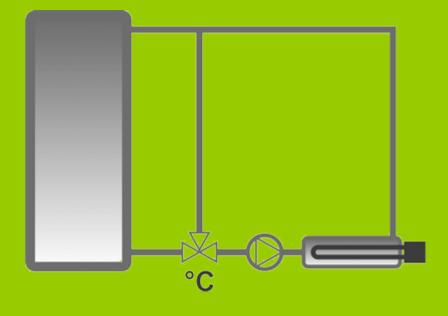
Folgende Geräteeinstellungen sind nur im Web-Interface möglich und können <u>nicht</u> am AC•THOR Display vorgenommen werden.


6.8.1. Besondere Einstellungen zur Betriebsart M1

Folgende Parameter können in der Betriebsart M1 am Web-Interface eingestellt werden.

Relais bei Wärmeabgabe aktivieren: Ist diese Option "Ein", so wird das Relais bei Wärmeabgabe für mindestens 120 Sekunden eingeschaltet. Das Relais kann so als potentialfreier Signalgeber verwendet werden.

Es können damit auch kleinere Umwälzpumpen mit Leistungen bis zirka 50 Watt geschaltet werden. Alternativ bietet beim AC•THOR die Betriebsart M7 eine weiter Möglichkeit zur Beladung großer Wärmespeicher mit einer Umwälzpumpe.

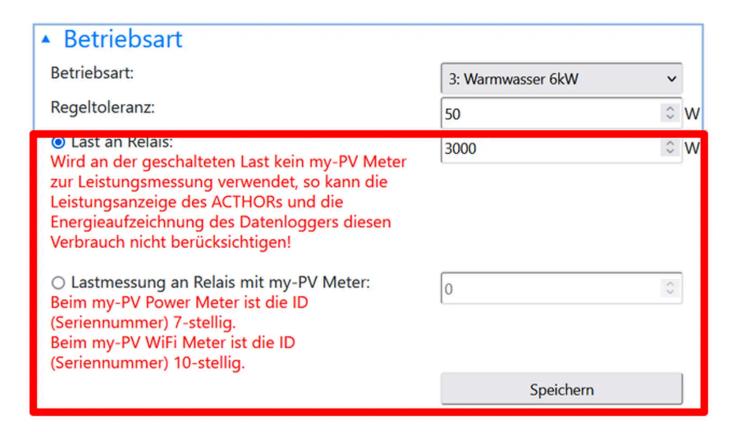

Der Warmwasser Sicherstellungs-Modus "Relais" ist dann nicht verfügbar!

Achtung

Beim Schalten größerer Leistungen oder bei Fremdansteuerung per "Modbus TCP", "http" oder "SMA Home Manager" kann es zu instabilem Regelverhalten kommen!

Q TIPP

Wird der Heizstab nicht direkt im Wärmespeicher verbaut, sondern in einem hydraulischen Bypass, und soll die Wärmeeinbringung durch die Umwälzpumpe erfolgen, dann könnte eine etwaige Verwirbelung der thermischen Schichten im Speicher durch ein dazwischen verbautes Mischventil verhindert werden.



Alternativ bietet beim AC•THOR die Betriebsart M7 eine weiter Möglichkeit zur Beladung großer Wärmespeicher mit einer Umwälzpumpe.

6.8.2. Besondere Einstellungen zur Betriebsart M3 (6kW/18 kW)

Folgende Parameter können in der Betriebsart M3 (6kW/18 kW) am Web-Interface eingestellt werden.

Reglertoleranz: Dieser Wert definiert die Reaktionsempfindlichkeit des AC•THOR Relais gegenüber Änderungen der Leistungsvorgabe. Durch das Relais wird der zweite Heizstab geschaltet.

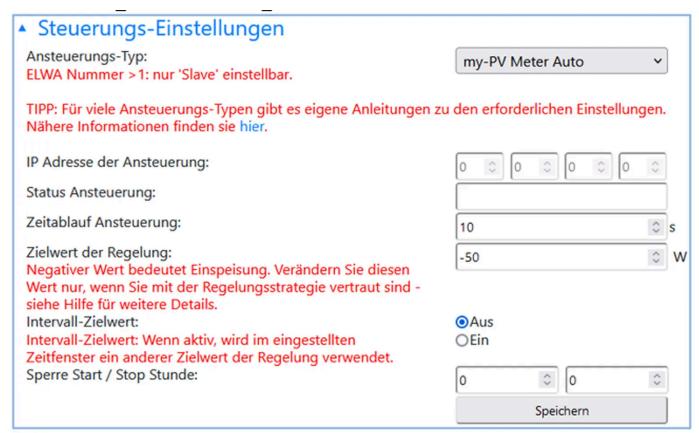
Last an Relais: Der Regelbereich des AC•THOR wird um diesen einstellbaren Schwellwert erweitert. Beim Erreichen des Schwellwerts wird die Last am Relais zugeschaltet und der AC•THOR beginnt an der geregelten Last wieder von 0 Watt mit der Regelung.

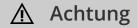
Lastmessung an Relais mit my-PV Meter: Alternativ zur statischen Definition der Last am Relais kann diese auch mit einem my-PV Meter gemessen werden. Dazu ist die Geräte-ID des my-PV Meter einzugeben. Diese finden sie am Gerät.

TIPP

Wird auch die AC•THOR Steuerung mit einem my-PV Meter ausgeführt (empfohlen), so sollte dafür eine statische IP-Adressen vergeben werden und der Ansteuerungstyp "my-PV Meter Manual" gewählt werden. Andernfalls könnte der AC•THOR die Signalquelle verwechseln!

6.8.3. Legionellen-Boost Ausgänge (nur bei AC•THOR 9s)


Beim AC•THOR 9s kann im Web-Interface eine Auswahl der Lastausgänge getroffen werden, die im Legionellenprogramm verwendet werden sollen. Werkseitig sind alle drei Ausgänge aktiviert.



Werden zum Beispiel 3 einphasige Heizstäbe verwendet und befindet sich nur einer davon in einem Trinkwasserspeicher, so ist eine Verwendung des Legionellenprogramms nur an diesem Heizelement sinnvoll!

6.8.4. Steuerungs-Einstellungen

In diesem Abschnitt wird die Auswahl der Ansteuerung des AC•THOR getroffen.

Ein Ansteuerungs-Typ ist nur auswählbar, wenn der AC•THOR die ab Werk voreingestellte Gerätenummer 1 hat. Siehe "Grundeinstellungen".

Die Funktion "Intervall-Zielwert" bewirkt, dass der AC•THOR in einem einstellbaren Zeitintervall den Zielwert der Regelung automatisch für eine bestimmte Dauer auf einen anderen einstellbaren Zielwert verändert. Dadurch kann gewährleistet werden, dass anderen Anwendungen mit geregelter Überschusssteuerung nicht Überschussenergie von der my-PV Anwendung vorenthalten wird.

Intervall-Zielwert: Intervall-Zielwert: Wenn aktiv, wird im eingestellten Zeitfenster ein anderer Zielwert der Regelung verwendet.	OAus ⊚Ein	
Intervall-Zielwert der Regelung:	-1500 🗘	W
Intervall:	15 🗘	min
Dauer des Intervall-Zielwerts:	60 0	s

Darunter fallen zum Beispiel Ladestationen von E-Autos die weder direkt, noch indirekt mit my-PV verbunden sind. Als Standard für den Intervall-Zielwert sind von my-PV daher -1500W eingestellt. Das entspricht der Mindestladeleistung vieler Elektroautos. Eine weitere Erklärung dazu finden sie im Abschnitt "Kompatibilität mit Ladestation ohne gemeinsames Energiemanagement" im Kapitel "E-Auto Funktion".

Die Funktion "Sperre" ermöglicht die Festlegung eines Zeitabschnitts, in dem der AC•THOR nicht in Betrieb sein darf. Anders als bei den beiden Zeitfenstern zur Warmwasser-Sicherstellung ist hierbei auch der Übergang zum nachfolgenden Kalendertag (Start-Stunde ist größer als Stopp-Stunde) möglich. Diese Funktion kann beispielsweise verwendet werden, um einer vorhandenen Batterie einen Beladungszeitraum einzuräumen und das Warmwasser nachrangig zu erwärmen.

Die Sperre blockiert die Überschussregelung, ebenso die optionale Temperatur-Sicherstellung über den angeschlossenen Wärmeerzeuger. Sie gilt außerdem auch für die geschaltete Last bei der Betriebsart M3.

Die Sperrzeit gilt nicht für die optionale Temperatur-Sicherstellung per Relais, nicht für die externe Last in der Betriebsart M4 und auch nicht für die E-Auto Funktion.

Achtung

Zeiteinstellungen werden innerhalb einer Minute wirksam.

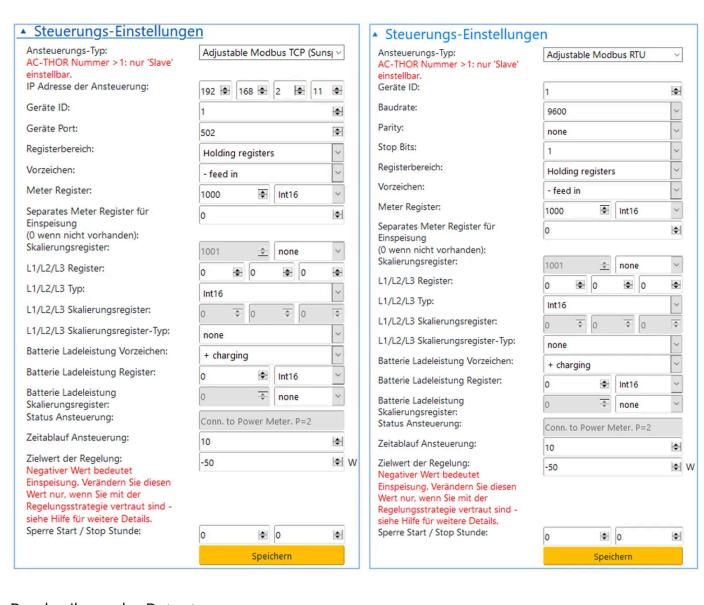
Bei den Ansteuerungsarten "Adjustable Modbus RTU" und "Adjustable Modbus TCP" bezieht der AC•THOR die Einspeise- bzw. Bezugsleistung von einem Wechselrichter oder

Modbuszähler. Die erforderlichen Kommunikationsregister sind entsprechend der Beschreibung des Herstellers einzustellen.

Achtung

Bei "Adjustable Modbus TCP" wird das Steuersignal über Netzwerk (RJ45, Ethernet) empfangen!

Achtung


Bei "Adjustable Modbus RTU" wird das Steuersignal über Modbus RTU (RS485, A B GND) empfangen! Anschlussschaubild laut Kapitel 9. Auch die Konfiguration dieser Steuerung erfolgt über das Web-Interface. Zumindest für die Inbetriebnahme ist somit temporär ein Netzwerkzugang nötig, der kann aber nach der Konfiguration entfernt werden!

TIPP

Ein einfacher Netzwerkrouter gehört heutzutage zum normalen Handwerkszeug. Wer seinen eigenen Router immer dabei hat ist auch nicht auf einen Netzwerkzugang bei der Kundenanlage angewiesen

Es muss nicht zwingend eine Internetverbindung vorhanden sein.

Geräte ID müssen entsprechend dem Fremdgerät eingestellt werden.

Beschreibung der Datentypen:

Int16

16-bit Integer Wert, Zweierkomplement-Darstellung

Int16-nc

16-bit Integer Wert, Betrags-Vorzeichendarstellung (1. bit = Vorzeichen)

Int32

32-bit Integer Wert, Zweierkomplement-Darstellung

Int32-sw

32-bit Integer Wert, Zweierkomplement-Darstellung, swapped words
Int32-nc
32-bit Integer Wert, Betrags-Vorzeichendarstellung (1. bit = Vorzeichen)
Int32-sw-nc
32-bit Integer Wert, Betrags-Vorzeichendarstellung (1. bit = Vorzeichen), swapped words
Float
32-bit Float Wert
Float-sw
32-bit Float Wert, swapped words

Achtung

Diese Steuerungsarten sind derzeit nicht für Hybridsysteme mit Batteriespeicher freigegeben.

Achtung

Bei der Einstellung "Adjustable Modbus TCP (Sunspec etc)" darf sich die IP-Adresse der Signalquelle im Betrieb nicht verändern (beispielsweise durch einen DHCP Router), ansonsten verliert der AC•THOR das Steuersignal.

Bei Ansteuerung durch einen Wechselrichter ist ein Einspeisezähler im System erforderlich. Die Abfrage des Wechselrichters liefert ansonsten keine Daten.

Achtung

Wir bitten um Verständnis, dass wir für Fremdprodukte keinen verbindlichen Support übernehmen können. Bei Fragen zu Fremdprodukten bitte den technischen Support des jeweiligen Unternehmens kontaktieren.

Achtung

Bei Betrieb mit Batterie sind unter Umständen weitere Regelparameter erforderlich. In diesem Fall bitte den technischen Support von my-PV kontaktieren.

6.8.5. Messwerte-Einstellungen

Optional können neben der PV-Überschussmessung (siehe Steuerungs-Einstellungen), auch andere Leistungen in einem System abgefragt und in der my-PV Cloud visualisiert werden. Verfügbare Größen sind Leistung Photovoltaik, Leistung Batterie, Leistung Ladestation und Leistung Wärmepumpe.

Achtung

Diese Messgrößen haben für den Regelbetrieb des my-PV Geräts keine Relevanz!

Messstelle mit "my-PV Meter" erfassen

Verwenden sie zur Messwerterfassung den my-PV Meter, so ist ID (Seriennummer) des Geräts einzugeben. Diese finden sie am Gerät.

Messstelle durch Datenabfrage von Fremdgerät erfassen ("Adjustable Modbus TCP")

Stammen die Messwerte von einem Fremdgerät, wie zum Beispiel von einem Wechselrichter oder Modbuszähler, so sind die erforderlichen Kommunikationsregister entsprechend der Beschreibung des Herstellers einzustellen.

Achtung

Die Messwerterfassung funktioniert ausschließlich über Netzwerk, nicht über Modbus RTU!

A Achtung

Wir bitten um Verständnis, dass wir für Fremdprodukte keinen verbindlichen Support übernehmen können. Bei Fragen zu Fremdprodukten bitte den technischen Support des jeweiligen Unternehmens kontaktieren.

EinstellungsparametMesswertquelle

Erklärung Bei "Adjustable Modbus TCP" wird das Steuersignal über Netzwerk (RJ45, Ethernet)

empfangen!

Einstellungsparamet Modbus IP Adresse

Erklärung Tragen Sie hier die IP-Adresse des Geräts ein, von dem Sie Daten abfragen

möchten.

Einstellungsparamet⊕eräte ID / Port

Erklärung Geräte ID und Port müssen entsprechend dem Fremdgerät eingestellt werden.

Dies ist wie eine bestimmte Wohnung in einem großen Gebäude. Sie sagen dem System, an welcher "Tür" es anklopfen soll. Beispiel: Geräte-ID 1 und Port 502.

Einstellungsparamet Registerbereich

Erklärung Holding Registers: Sind für die Speicherung von Informationen vorgesehen, die

von einem Benutzer verändert werden können, wie zum Beispiel Einstellungen,

Konfigurationen oder Prozessparameter (R/W Read and Write).

Input Registers: Enthalten Daten, die normalerweise nicht vom Benutzer verändert werden können (R/O Read Only). Diese Register enthalten oft

Informationen über den Zustand eines Geräts oder Prozesses, wie beispielsweise

Sensordaten oder Statusinformationen.

Einstellungsparametelfeter Register

Erklärung Hier wird das Summenregister (Summe der Leistung an allen drei Stromphasen)

des Fremdgeräts eingestellt.

Sofern für die Art der Messstelle von Bedeutung, z.B. bei Batteriespeicher oder Bidirektionaler Wallbox, muss das Register beide Energieflussrichtungen beinhalten!

Datentyp: Legen Sie das Format fest, in dem das Summenregister Daten zur Verfügung stellt. Beschreibung der Datentypen:

Einstellungsparametent16

Int16-nc Int32 Int32-sw Int32-nc Int32-sw-nc

Float Float-sw

Erklärung

16-bit Integer Wert, Zweierkomplement-Darstellung

16-bit Integer Wert, Betrags-Vorzeichendarstellung (1. bit = Vorzeichen)

32-bit Integer Wert, Zweierkomplement-Darstellung

32-bit Integer Wert, Zweierkomplement-Darstellung, swapped words 32-bit Integer Wert, Betrags-Vorzeichendarstellung (1. bit = Vorzeichen)

32-bit Integer Wert, Betrags-Vorzeichendarstellung (1. bit = Vorzeichen), swapped

words

32-bit Float Wert

32-bit Float Wert, swapped words

Einstellungsparamet & kalierungsregister

Skalierungsregister-Typ

Erklärung

Wenn eine Skalierung der Daten aus dem Summenregister erforderlich ist, können

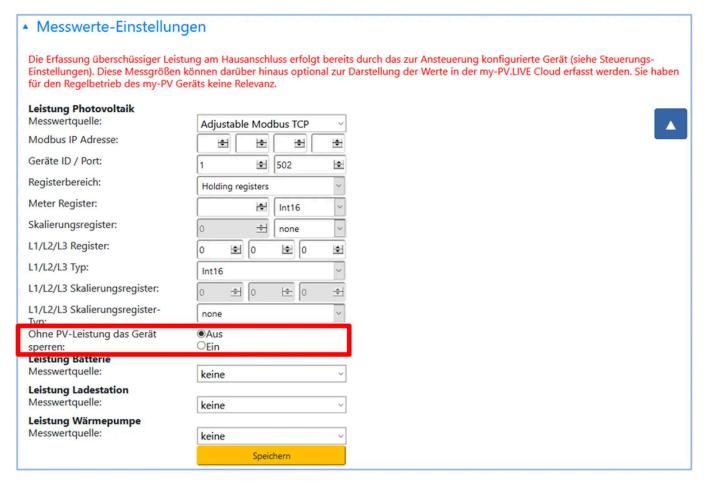
Sie diese hier einstellen. Zur Auswahl steht die Skalierung nach Sunspec,

Dividieren "DIV" oder Multiplizieren "MUL".

Einstellungsparametell/L2/L3 Register

L1/L2/L3 Typ

Skalierungsregister


Skalierungsregister-Typ

Erklärung

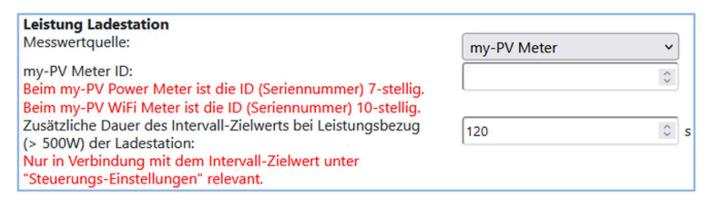
Wenn Hersteller kein Summenregister (Summe der Leistung von allen drei Stromphasen) zur Verfügung stehen, können in der Regel die drei Register für die einzelnen Phasen abgefragt werden.

Datentyp: Legen Sie das Format fest, in dem die Phasenregister Daten zur Verfügung stellen. Beschreibung der Datentypen oberhalb.

Wenn eine Skalierung der Daten aus den Phasenregistern erforderlich ist, können Sie diese hier einstellen. Zur Auswahl steht die Skalierung nach Sunspec, Dividieren "DIV" oder Multiplizieren "MUL".

Leistung Photovoltaik

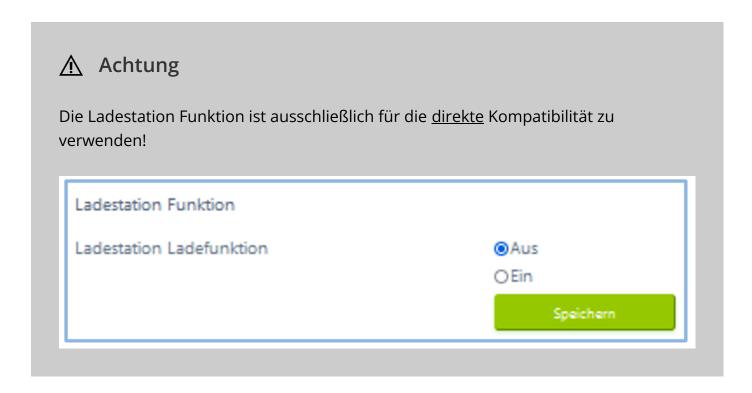
Bei der Messstelle "Leistung Photovoltaik" besteht die Möglichkeit das my-PV Gerät zu sperren, wenn der Wechselrichter keine Leistung erzeugt. Der Betrieb zur optionalen Temperatursicherstellung ist davon nicht betroffen.


Leistung Batterie

Bei der Messstelle "Leistung Batterie" gibt es zusätzlich die Möglichkeit den SOC (State of Charge) der Batterie und den Batteriestatus abzufragen, sofern diese Informationen von der Batterie zur Verfügung gestellt werden.

Leistung Ladestation

Bei der Messstelle "Leistung Ladestation" gibt es zusätzlich die Möglichkeit den SOC (State of Charge) des Fahrzeugs abzufragen, sofern diese Information von der Ladestation zur Verfügung gestellt wird.


Falls die Steuerungsfunktion "Intervall-Zielwert" genutzt wird (siehe Kapitel "Steuerungs-Einstellungen") <u>und</u> auch die Messstelle "Leistung Ladestation" abgefragt wird, so besteht hier die Möglichkeit eine zusätzliche Dauer des Intervall-Zielwerts zu definierten. Der Intervall-Zielwert wird damit um diese zusätzliche Dauer verlängert, sofern die Leistung an der Ladestation am Ende des ersten Intervalls zumindest über 500W liegt.

Der positive Effekt daraus ist, dass die Zeit des höheren Zielwerts der Regelung deutlich verkürzt werden kann. Es wird schneller wieder auf den ursprünglichen Zielwert zurückgeregelt, wodurch wiederrum ein höherer Eigenverbrauch gewährleistet ist.

6.8.6. Ladestation Funktion

my-PV produziert zwar keine Ladestationen, es gibt aber verschiedene Möglichkeiten der Kompatibilität.

Direkte Kompatibilität mit Ladestation

Eine direkte Kompatibilität besteht, wenn my-PV auch das Energiemanagement der Ladesäule vornimmt. Hier ist jedoch zu beachten, dass die Leistungssteller von my-PV ausschließlich an elektrischen Widerstandsheizungen die Leistung modulieren können. Das heißt sie übernehmen niemals die Leistungsmodulation der Ladestation! Durch das Energiemanagement kann der Ladesäule jedoch mitgeteilt werden, wie viel Photovoltaiküberschuss vorhanden ist. Sobald der verfügbare Ladestrom die Grenze von 6 Ampere übersteigt, kann die Ladesäule die Leistung zur Fahrzeugbeladung entsprechend einstellen. Obwohl sich my-PV selbst eigentlich nicht als Smarthome-Hersteller betrachtet, ist diese Art des Energiemanagements mit einigen Typen der Marke Keba möglich. Nähere Informationen zu direkt kompatiblen Ladestationen finden sie hier.

Indirekte Kompatibilität mit Ladestation

Eine indirekte Kompatibilität besteht bereits dann, wenn ein übergeordnetes Energiemanagement die Kontrolle über alle Verbraucher hat. Sprich: Wenn zum Beispiel ein Smarthome neben der Leistungsvorgabe an my-PV auch im Stande ist, eine Ladesäule zu kontrollieren. In einigen Fällen erlauben solche Systeme auch eine Priorisierung der verschiedenen Anwendungen. Als Beispiele für eine solche indirekte Kompatibilität können etwa der SMA Sunny Home Manager, E3DC oder Solar-Log genannt werden. Dabei hat das my-PV Gerät also unmittelbar gar nichts mit der Ladesäule zu tun. Auch der Wallboxhersteller openWB fällt aus der Sicht von my-PV unter die Kategorie übergeordnetes Energiemanagement, denn die gesamte Steuer- und Regelungsstrategie der Verbraucher liegt bei openWB, die my-PV Geräte bekommen lediglich die Leistungsabgabe vorgegeben.

Sowohl bei der indirekten, als auch bei der direkten Kompatibilität, stimmt eine Intelligenz die Wärmeanwendungen von my-PV und die Ladesäule aufeinander ab. Daneben gibt es aber noch eine dritte Möglichkeit.

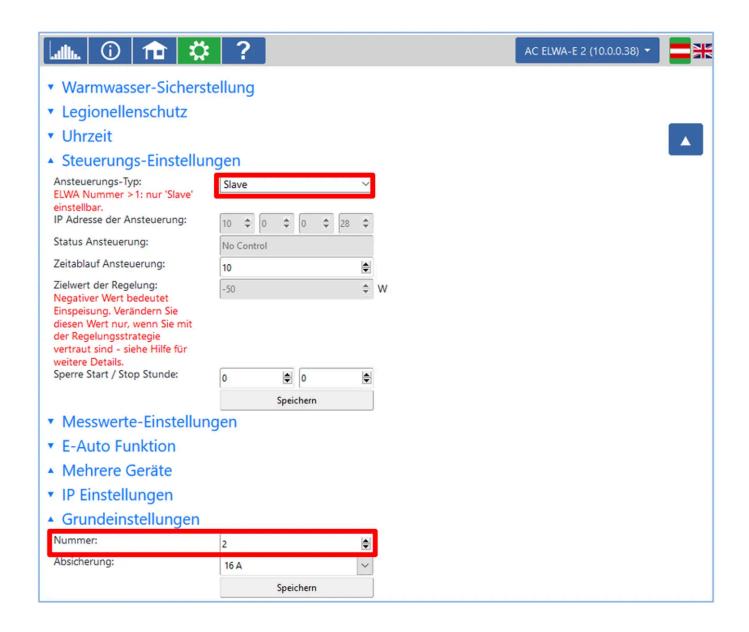
Kompatibilität mit Ladestation ohne gemeinsames Energiemanagement

Diese betrifft den Fall, dass es zwar beide Anwendungen gibt, diese aber durch kein Energiemanagement intelligent miteinander interagieren. Das ist dann der Fall, wenn zum Beispiel ein Wechselrichterhersteller seine eigene Ladesäule mit Solarstrom steuern kann, jedoch die my-PV Anwendung nicht als Teil des Energiemanagements in seine Steuerung implementiert hat. Dabei existiert my-PV als eigener Regler quasi parallel dazu und verwendet den PV-Überschuss entsprechend der Leistungsmessung vom Hausanschluss. Dabei kann es vorkommen, dass die my-PV Anwendung keinen Überschuss für die Ladesäule übriglässt.

Eine Abstimmung des Zusammenspiels mit der Ladestation ist bei der AC ELWA-E ab Firmware 00205.00 und beim AC•THOR ab Firmware a0020800 aber dennoch gegeben. Die Erklärung dazu finden sie im Abschnitt "Intervall-Zielwert" im Kapitel "Steuerungs-Einstellungen", sowie im Abschnitt "Leistung Ladestation" im Kapitel "Messwerte-Einstellungen".

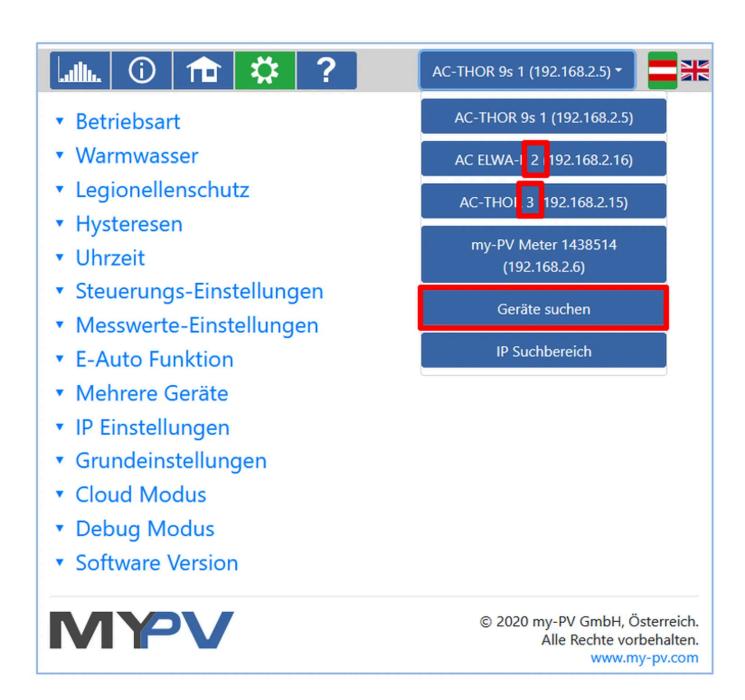
6.8.7. Mehrere Geräte (Multi-Mode)

Es können mehrere AC ELWA 2, AC ELWA-E, AC•THOR oder AC•THOR 9s in einem Netzwerk verwendet werden. Der Betrieb erfolgt nach dem Master/Slave Prinzip.


Attention

Bei der Verwendung mehrerer Geräte sind folgende Dinge zu beachten:

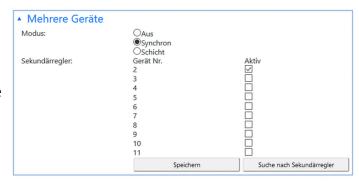
- Alle Geräte sind per Netzwerkkabel mit dem Router zu verbinden
- Einer Signalquelle darf nur ein Master zugewiesen sein und umgekehrt.
- Pro Master sind maximal 10 Slaves möglich.
- Alle Slaves im Netzwerk müssen unterschiedliche Gerätenummern haben, auch wenn diese verschiedenen Mastern zugeordnet werden.
- Allen Geräten sind permanente IP-Adressen zuzuweisen. Dies kann auf drei Arten erfolgen:
 - Im Web-Interface des jeweiligen Gerätes (siehe IP Einstellungen)
 - Beim AC•THOR auch am Display
 - Am Router (empfohlen)


Einstellungen an Slaves

An den Slaves sind lediglich die Gerätenummern festzulegen. Alle weiteren Einstellungen sind nur am Master erforderlich.

Sobald eine Zuweisung erfolgt ist, sind bei den Steuerungs-Einstellungen keine Eingaben mehr möglich bzw. erforderlich. Das IP-Adressenfeld ist deaktiviert und im Feld Ansteuerungs-Typ erscheint "Slave".

Nach einer Gerätesuche in der Schnellauswahl rechts oben erscheint der Slave mit der eingestellten Nummer. Eine Umschaltung zwischen den Geräten ist hier möglich.



Einstellungen an Master

Nur bei Geräten mit der Gerätenummer 1 (=Master) erscheint die folgende Ansicht im Setup:

Um die Einstellungen für mehrere Geräte am Master vorzunehmen, muss zunächst zwischen Synchron und Schichtladung gewählt werden. Bei Synchronladung wird die Leistung gleichmäßig auf den Master und seine Slaves verteilt. Bei der Schichtladung werden die Geräte entsprechend ihrer Nummern nacheinander gesteuert, jeweils bis zum Erreichen der eingestellten Zieltemperatur.

Nach der Auswahl starten sie bitte die "Suche nach Sekundärregler" und aktivieren die gewünschten Geräte. Speichern sie dann die Einstellung.

♠ Achtung

Der Scanvorgang läuft über den UDP Port 16124. Firewalls (oder spezielle Routereinstellungen) können unter Umständen das Auffinden anderer Geräte verhindern.

6.8.8. API

Dieser Menüpunkt erscheint bei den Geräteeinstellungen nur in der my-PV Cloud, nicht im lokalen Web-Interface! Dafür ist es zwingend nötig, dass das Gerät eine aktive Internetverbindung hat und der "Cloud Modus" aktiviert ist.

Die my-PV API, erlaubt es über eine internetbasierte Schnittstelle (https), aktuelle Betriebsdaten abzufragen und Setupänderung vorzunehmen. Leistung kann, für die im Request angegebene Dauer, vorgegeben werden.

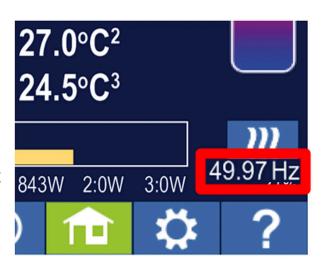
Im Menüpunkt "API" kann ein Zugriffstoken generiert werden. In Verbindung mit der 16stelligen Seriennummer des Geräts können mit dem Token die Endpoints der API genutzt werden. Dieser Token wird in der my-PV Cloud nur einmal angezeigt, bitte notieren Sie sich diesen. Falls nötig können Sie aber jederzeit einen neuen Token generieren.

Die genaue Dokumentation der API (Swagger Dokumentation) ist erreichbar unter:

api.my-pv.com

Lokale Signalquellen werden bei dieser Ansteuerung übersteuert. Priorität hat immer die API-Ansteuerung!

6.9. Hilfe


Im Web-Interface führt der Button zur online Betriebsanleitung die der jeweils installierten Firmwareversion entspricht.

7. Frequenzsteuerung

7.1. Erklärung

Bei dieser Signalquelle wird ein Wärmeerzeuger in einem AC-Inselnetz stufenlos mit PV-Überschuss versorgt. Die Leistung des AC•THOR wird dem Gerät dabei von einem Batteriewechselrichter durch Veränderung der Netzfrequenz via Strom-Netzanschluss vorgegeben. Eine Verkabelung für die Kommunikation ist nicht erforderlich!

Sobald die Frequenzsteuerung als Signalquelle gewählt wird, wird der Messwert am Display rechts unten über dem Hilfe-Button angezeigt.

Achtung

Im Sicherstellungsbetrieb ist die Entladung der Batterie zu erwarten!

Mit mehreren AC•THORen können jeweils unterschiedliche Frequenzbereiche vorgegeben werden. Somit ist auch ohne die Einstellung des Multi-Mode eine Priorisierung von mehreren Wärmeerzeugern möglich!

7.2. Spezifische Einstellungen zur Frequenzsteuerung

Frequenz

Der Frequenzbereich in dem die einstellbare Leistung stufenlos ausgegeben wird ist veränderbar. Als untere Grenze (keine Leistung) und obere Grenze (maximale Leistung) steht jeweils ein Bereich zwischen 45 und 65 Hz zur Verfügung. Werkseitig sind 50 Hz und 51 Hz eingestellt. Der Frequenzbereich muss mindestens 0,5 Hz groß sein!

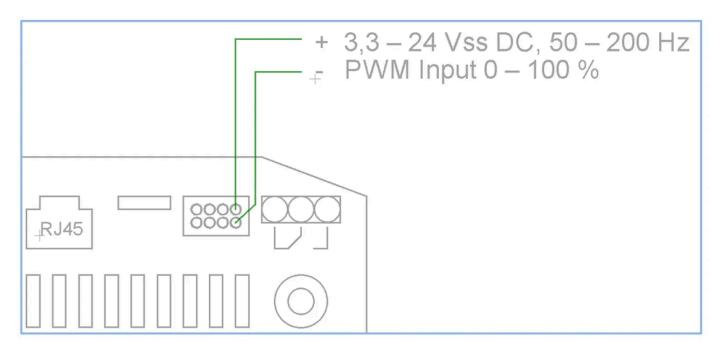
Max. Leistung

Die Eingabe der maximalen Leistung der Heizlast ist für diese Betriebsart sehr wichtig. Daher erscheint diese Einstellmöglichkeit hier an zweiter Stelle zusätzlich noch einmal zur normalen Position in den Einstellungen. Näheres unter "Allgemeine Einstellungen".

8. Potentialfreier Eingang für externe Ansteuerung

Ansteuerung mit 3,3 - 24 V Gleichspannung von extern Quelle

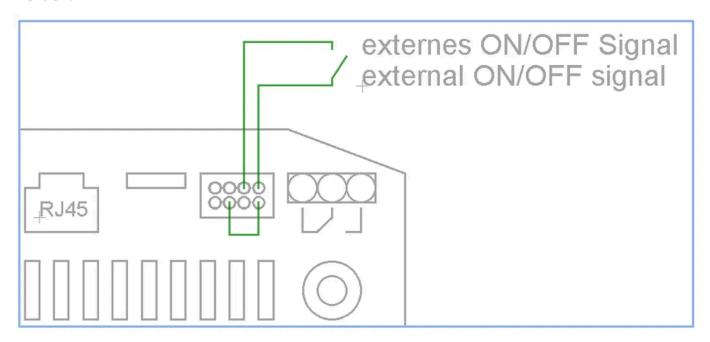
Der AC•THOR kann auch über ein externes PWM-Signal mit variabler Leistung betrieben werden. Der entsprechende Signaleingang befindet sich am 8-poligen Stecker an dem auch der Temperaturfühler angeschlossen ist.



Diese Ansteuerung ist unabhängig von der gewählten Betriebsart. Ist ein PWM Signal vorhanden, so erfolgt auch die Übersteuerung aller anderen Steuersignale die möglicherweise über ein Netzwerk verfügbar wären. Ist am AC•THOR der Temperatur-Sicherstellungsbetrieb eingestellt, so bleibt dieser aber gültig.

Bei der Verwendung mehrerer AC•THORen ist eine separates PWM Signal für jedes Gerät erforderlich. Der Multimode ist bei dieser Steuerart nicht möglich!

Sobald ein PWM Signal anliegt, wird es am Display rechts unten über dem Hilfe-Button in Prozent angezeigt.


A Achtung

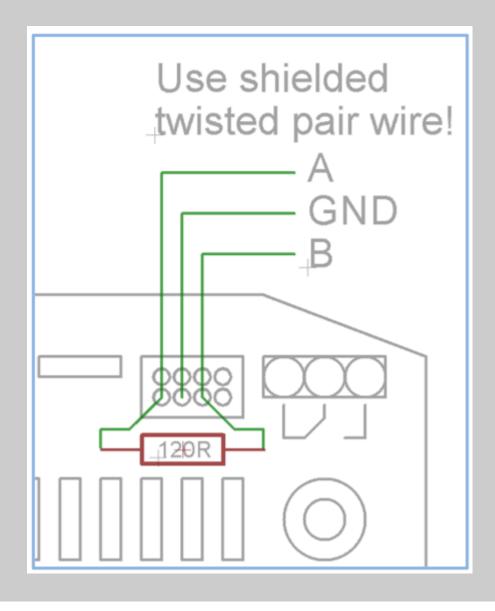
Polarität der Gleichspannung beachten!

Ohne Temperaturfühler erfolgt keine Abschaltung durch den AC•THOR. Diese muss dann durch die externe Signalquelle oder durch Abschaltung per Thermostat erfolgen!

Ansteuerung mit potentialfreiem Kontakt

Der AC•THOR kann über ein externes Signal auch starr mit maximaler Leistung betrieben werden.

9. Modbus RTU Anschluss für externe Ansteuerung


Achtung

Geschirmte verdrillte Leitung verwenden und den Schirm an einem Ende auf Erde (GND) anschließen!

RTU Bus mit einem 120 Ohm Abschlusswiderstand versehen! (Nicht im Lieferumfang enthalten)

A Achtung

Bei der Ansteuerung durch Modbus RTU kann die Betriebsart M7 nicht verwendet werden!

10. Firmware Update

Internetzugang ist erforderlich!

10.1.1. Manuelles Update

Display - Einstellungen - Werkseinstellungen:

Prüfe auf neue FW: Updateüberprüfung manuell starten. Wenn eine neue Version verfügbar ist, wird diese auf der SD Karte gespeichert. Dieser Vorgang dauert mehrere Minuten. Während dieser Zeit ist der AC•THOR normal betriebsfähig.

Firmware Update starten: Sofern eine neuere Softwareversion auf der SD Karte vorliegt kann das Update manuell gestartet werden. Nach dem Update wird automatisch ein Neustart des Geräts durchgeführt.

Power FW Update starten: Sofern eine neuere Leistungsteil-Softwareversion auf der SD Karte vorliegt kann das Update manuell gestartet werden. Nach dem Update wird automatisch ein Neustart des Geräts durchgeführt. Beim AC•THOR 9s wird dabei das Update für beide Leistungsteile gestartet.

10.2. Update mit SD Karte

Diese Möglichkeit besteht für Anlagen ohne Internetzugang. Abstimmung mit unserem technischen Support erforderlich. Senden Sie uns dazu die 16-stellige Seriennummer an sup
port@my-pv.com

Achtung

SD Karte niemals im laufenden Betrieb entnehmen!

Achtung

Niemals SD Karten zwischen den Geräten austauschen! Es befinden sich darauf seriennummernspezifische Daten.

11. Statuscodes

AC•THOR:

- 0 ... Aus
- 1-8 ... Gerätestart
- 9... Betrieb
- >=200 Fehlerzustände Leistungsteil

AC•THOR 9s:

- 0-15 ... interne Zustände für Supportzwecke
- >=200 Fehlerzustände Leistungsteil 9s
- 12. Temperaturfühler: Zuordnung und Funktion (nur bei AC•THOR 9s)

Fühlerzuordnung:

Betriebs- art	Last-priorität
M1	1-2-3
M1	3-2-1
M2	1-2-3
М3	1-2-3
M4	1-2-3
M5	3-2-1
М6	3-2-1
M7	1-2-3
Betriebs- art	OUT-3
M1	Sensor 1
M1	Sensor 1

M2 Sensor 1 М3 Sensor 1 M4 Sensor 1 Sensor 1 WW **M5** M6 Sensor 3 RH3 M7 Sensor 1 **Betriebs- art** OUT-2 M1 Sensor 1 M1 Sensor 2 Sensor 1 **M2** М3 Sensor 1 Sensor 1 **M4** M5 Sensor 3 RH2 M6 Sensor 2 RH2 **M7** Sensor 1 Betriebs- art OUT-1 M1 Sensor 1 M1 Sensor 3 **M2** Sensor 1

Sensor 1

М3

M5 Sensor 2 RH1

M6 Sensor 1 RH1

M7 Sensor 1

Fühlerfunktion:

Betriebs- art	Last-priorität
DCtileb3- aic	

M1 1-2-3

M1 3-2-1

M2 1-2-3

M3 1-2-3

M4 1-2-3

M5 3-2-1

M6 3-2-1

M7 1-2-3

Betriebs- art Sensor 1

M1 Max / Min

M1 Max / Min

M2 Schicht-

umschaltung

Max / Min

M4 Max / Min

M5 Max / Min

M6 Max / Min

M7 Max

Betriebs- art Sensor 2

M1 keine

M1 Max / Min

M2 keine

M3 keine

M4 keine

M5 Max / Min

M6 Max / Min

M7 PWM

Betriebs- art Sensor 3

M1 keine

M1 Max / Min

M2 keine

M3 keine

M4 keine

M5 Max / Min

M6 Max / Min

13. Fehler Temperatursensoren

- 0° Fühlerbruch
- 85° Datenstörung Temperatursensor

14. Fehlermeldungen am Display

Fehlermeldungen werden immer nur am Homescreen des Displays angezeigt. Im Web-Interface erfolgt keine Darstellung.

Fehler 101

Keine Phase an Relais Mittelkontakt erkannt

Fehler 102

Temperatur Sensor 1 erforderlich für WW Sicherstellung Prüfen sie ob Sensor aktiviert wurde!

Fehler 103

Temperatur Sensor 1 erforderlich für diese Betriebsart Prüfen sie ob Sensor aktiviert wurde!

Fehler 104

Temperatur Sensor 1 erforderlich für Raumheizung Prüfen sie ob Sensor aktiviert wurde!

Fehler 105

Temperatur Sensor 1 erforderlich für Warmwasser Prüfen sie ob Sensor aktiviert wurde!

Fehler 106

Regelbare Leistung < Last an Relais

Fehler 107

Temperatur Sensor 2 erforderlich für Raumheizung Prüfen sie ob Sensor aktiviert wurde!

Fehler 108

Temperatur Sensor 2 erforderlich für PWM Prüfen sie ob Sensor aktiviert wurde!

Fehler 109

Temperatur Sensor 1 erforderlich für Legionellenschutz Prüfen sie ob Sensor aktiviert wurde!

Fehler 110

FW Update misslungen Kommunikations-Fehler mit Leistungsteil. Gerät neu starten

Fehler 111

FW Update misslungen Problem mit p-File. Gerät ausschalten. SD Karte mit p-File einsetzen. Siehe Bedienungsanleitung www.my-pv.com Gerät neu starten

Fehler 112

Temp Sensor 3 erforderlich für Warmwassersicherstellung Prüfen sie ob Sensor aktiviert wurde!

Fehler 113

Leistungsteil Kommunikation Timeout. Gerät neu starten

Fehler 114

Leistungsteil hängt im Bootloader. Gerät neu starten

Fehler 115

Temperatur Sensoren 2 und 3 erforderlich für Raumheizung. Prüfen sie ob die Sensoren aktiviert wurden!

Fehler 116

Leistungsteil überlastet. Installation prüfen

Fehler 117

Leistungsteil Übertemperatur. Gerät schaltet nach Abkühlung wieder ein.

15. Fehlersignale des AC•THOR Logos

1x blinken: SD-Karte Error

2x blinken: Firmware schadhaft

3x blinken: Displayfehler