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Variant calling has become a routine component of genomic analysis, enabling the identification of single-nucleotide variants, 
small insertions and deletions, and structural variants across the human genome. However, a subset of challenging medical-
ly-relevant genes (CMRGs) remains difficult to analyze. Examples include gene/pseudogene pairs embedded in large segmental 
duplications, as well as genes overlapping complex repeat structures such or genes overlapping short tandem repeats. In seg-
mental duplications, high sequence identity among paralogs complicates read mapping and paralog-specific variant interpreta-
tion, while frequent gene conversions, and gene–pseudogene hybrids further obscure copy-specific analysis when using short 
reads. At repeat-expansion loci, motif length, sequence composition, and haplotype context often determine pathogenicity, yet 
are inaccessible to short-read methods. Oxford Nanopore long-read sequencing addresses these limitations by spanning seg-
mental duplications, low-complexity repeats, and providing long-range phasing in a single assay. It also preserves DNA methyl-
ation and supports both reference-guided and assembly-based approaches. Using reference cell lines with known pathogenic 
variants, we demonstrate that Nanopore sequencing provides a robust and flexible platform for interrogating CMRGs, enabling 
accurate variant calling, haplotype resolution, and improved diagnostic insight in regions previously considered intractable.

Abstract

Figure 2A illustrates allele- and haplotype-specific analysis of repeat expansions at clinically relevant short tandem repeats (STRs). 
Individual reads span the repeat as well as unique flanks, enabling direct sizing of each allele and unambiguous phasing to parental 
haplotypes. We demonstrated locus-specific repeat length estimation by reporting read-level repeat counts, using wf-human-varia-
tion, for Huntington’s disease (HTT) across three samples and for Fragile-X-Syndrome (FMR1) across five samples, capturing both 
normal and expanded alleles as well as inter-read variability. However, pathogenicity at several loci depends not only on length but 
also on repeat composition2. To illustrate nanopore’s ability to distinguish between disease-associated and non-pathogenic motifs 
we sequenced a trio with repeats expansions in RFC1 (Fig. 2B). Moving beyond locus-by-locus assays, medaka tandem  is a scal-
able tool for genome-wide analysis of STR lengths across a large catalog of repeats (Fig. 2C). We applied this method to the addoto 
repeat catalogue3 and evaluated performance against the GIAB STR benchmark, observing high precision and recall.

2. Resolving short tandem repeats
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3. Full characterisation of the SMA locus 5. Macro-satellites and complex repeat structures
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Spinal muscular atrophy results from loss-of-function variants in, or complete loss of, SMN14 (Fig. 3A). Accurate identification of 
these variants is challenging because the near-identical paralog SMN2 confounds read mapping, copy-number estimation, and vari-
ant attribution with short reads. Here, we demonstrate that, by spanning paralogous regions and informative paralog-specific bases, 
Nanopore sequencing enables a reference-based phasing approach assigning reads directly to SMN1 or SMN2 haplotypes (Fig. 
3B). This approach yields haplotype-resolved SMN1 and SMN2 copy numbers and detects pathogenic SNPs, indels, and structur-
al variants in each gene. However, a major remaining challenge is the identification of silent carriers i.e. individuals with a haplotype 
lacking SMN1 (Fig. 3C). Traditionally, silent-carrier risk is assessed using marker variants, but these proxies are imperfect5. Figure 
3D shows that the two most common markers are present in the GM2029 cell line, suggesting silent-carrier status. Only through 
genome assembly (Fig. 3E) were we able to uncover that, in spite of the marker variants, both haplotypes contain a copy of SMN1.

4. Resolving paralogues and multi-copy genes

Resolving paralogues and multi-copy genes requires discriminating near-identical copies, assigning variants and copy number to 
the correct paralogue and haplotype, and the detection of gene conversions or rearrangements. As summarised in the SMA panel 
above, long-read, reference-based phasing successfully resolves SMN1 and SMN2. This approach extends to other clinically im-
portant CMRGs, including PMS2/PMS2CL, HBA1/HBA2 and CYP21A2/CYP21A1P. As a representative case, we resolved a co-
py-number loss of CYP21A2 within the RCCX module (Fig. 4A). However, some CMRGs, such as CYP2D6, require full haplotype 
reconstruction even in the presence of complex hybrids. To resolve CYP2D6, we used chinook, an assembly-based analysis tool 
that reconstructs individual gene copies, resolves hybrid junctions, and differentiates CYP2D6 from CYP2D7 (Fig. 4B). Together, 
reference-guided phasing and targeted assembly deliver paralogue- and haplotype-specific variant calls, robust copy-number esti-
mates, and clinically interpretable haplotypes across diverse multi-copy genes.
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Facioscapulohumeral muscular dystrophy (FSHD) results from the misexpression of the DUX4 gene encoded within the D4Z4 array 
located on chromosome 46. Misexpression of stable mRNA from DUX4 is caused by aberrant chromatin architecture and subsequent 
hypo-methylation due to a contraction of the D4Z4 array to under 10 repeat units. There are two dominant alleles in the population, 
termed 4qA and 4qB, which exist at approximately equal frequencies. Due to the presence of a pLAM site and associated polyA 
signal (PAS), FSHD is only observed in individuals with a contracted and/or hypo-methylated 4qA allele. Contractions and methylation 
status of the 4qB allele, or a region on chromosome 10 that shares approximately 98% homology with the 4q region, have no effect 
on the FSHD phenotype (Fig. 5A). The cell line GM17939 was obtained from an individual with FSHD. Using hifiasm7 with presets 
optimised for Oxford Nanopore sequencing, the 4q and 10q regions were assembled and used as input into the DZ4Z repeat caller, 
D4Z4End2End8. Raw reads were mapped back to the assemblies and methylation status of the whole array was enumerated. The 
4qA allele showed a significant contraction to within the pathogenic range and the array was shown to be hypo-methylated. The 
4qA specific pLAM and polyA signal required for production of stable mRNA was identified in the assembly. The contig representing 
a 4qB allele was identified using a B specific sequence located towards the telomeric region of the array, while the 10q specific 
pLAM site was identified in the assembled haplotypes representing the 10q homologous regions (Fig. 5B).   

Oxford Nanopore sequencing enables the comprehensive characterization of challenging medically-relevant genes (CMRGs) 
that remain inaccessible to short-read sequencing. Across diverse genomic contexts, including segmental duplications, repeat 
expansions, and epigenetically regulated regions Nanopore sequencing enables phasing of variants, resolving of structural rear-
rangements, quantification of allele-specific copy number, and detection of clinically relevant methylation states. By combining 
reference-based phasing, assembly-based reconstruction, and methylation-aware analysis, we demonstrate accurate interpre-
tation for genes such as SMN1, CYP2D6, FMR1, RFC1, and DUX4. These results highlight the value of long-read sequencing 
as a scalable and unified platform for variant detection in CMRGs, supporting both research and translational applications.

Conclusion
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1. Introduction
Challenging medically-relevant genes (CMRGs) harbor clinically actionable variation in sequence 
contexts that are inaccessible to short-read sequencing1. CMRG categories include multi-copy 
genes arising from large, highly identical segmental duplications; repeat-expansion and short 
tandem repeat loci; regions enriched for complex structural variation or complex repeats; and 
regions of low sequence complexity. Clinical interpretation frequently requires establishing cis/
trans phase for compound-heterozygous variants tens to hundreds of kilobases apart. Oxford 
Nanopore long reads span repetitive regions, enable phasing, and, where required, support local 
or whole-genome assembly to resolve complex structural variation. Furthermore, preservation of 
methylation information renders specialised assays unnecessary at loci where epigenetic state 
contributes to pathogenicity.
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