# Oxford Nanopore Technologies



# **Human genomics**

# Genome assembly

Like a jigsaw puzzle, the larger the pieces ("reads"), the easier the assembly.



# **Nanopore** sequencing

Read length is equal to fragment length...

...current longest nanopore read:

>2 MB<sup>1</sup>



...repetitive regions





Using a MinION nanopore sequencer, enabled us to analyze regions of the human genome that were previously intractable with state-of-the-art sequencing methods<sup>2</sup>.

#### **Short-read sequencing** technology

#### Nanopore sequencing

Read length typically 150-300 bp



#### Read length equal to DNA fragment length

- Resolve repetitive regions and structural variation
- Assemble high-quality genomes with fewer gaps
- Analyse haplotypes and phasing

**Amplification required** 



# **Direct, amplification-free protocols**

- Detect base modifications as standard
- Eliminate amplification bias

Fixed run time



## **User-defined run time**

Stop sequencing when sufficient data generated

Bulk data delivery at end of run



## **Real-time data streaming**

Immediate access to results



## Flexible, on-demand sequencing

Designed to run up to 48 independently addressable flow cells.

# High yield, high throughput

Up to 9,600 Gb data (all 48 flow cells sequencing)\*

## Rapid, real-time data streaming

Immediate access to results

## **Cost-effective**

<\$1000 for human genome (30x coverage), including base modifications

Min**ION** 



**GridION** 



Prometh ION



Download the white paper at

nanoporetech.com

2. Jain, M. et al. 2018. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 36(4) \* Based on current internal flow cell performance of 200 Gb (October 2018). Theoretical PromethION performance of up to 15 Tb.

1. Payne, A et al. 2018. Whale watching with BulkVis: A graphical viewer for Oxford Nanopore bulk fast5 files. bioRxiv 312256

Oxford Nanopore Technologies, the Wheel icon, GridlON, MinIT and PromethION are registered trademarks of Oxford Nanopore Technologies in various countries. © 2018 Oxford Nanopore Technologies. All rights reserved. GridION, MinION and PromethION are currently for research use only.