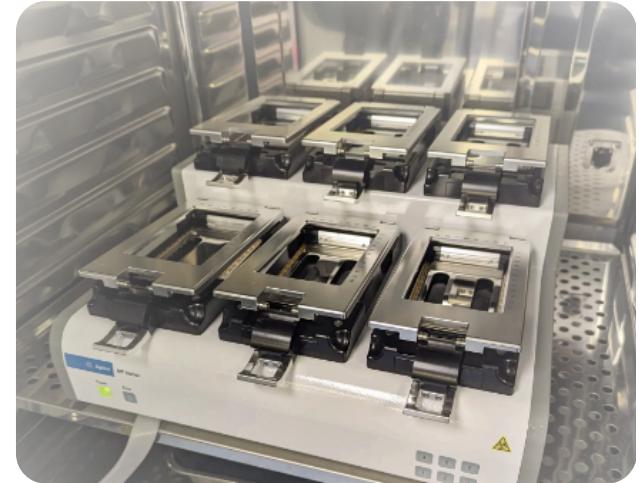


bio:ascent

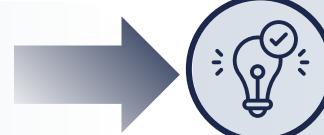
GPCR ASSAY TECHNOLOGIES GUIDE


CELLULAR IMPEDANCE

bio:ascent

HOW IT WORKS

Microelectronic biosensor system that monitors whole-cell responses without labels



TECHNOLOGY

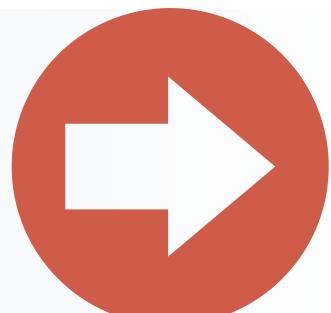
Agilent xCELLigence cell analysis system

KEY FEATURES

Label-free functional assay

Broad applicability across various cell types: endogenous GPCRs in primary cells, over-expressing cell lines, stem cells, or disease relevant cell lines

Simultaneously screen GPCR function across **all coupling classes**: Gas, Gaq, as well as Gai and Ga12/13

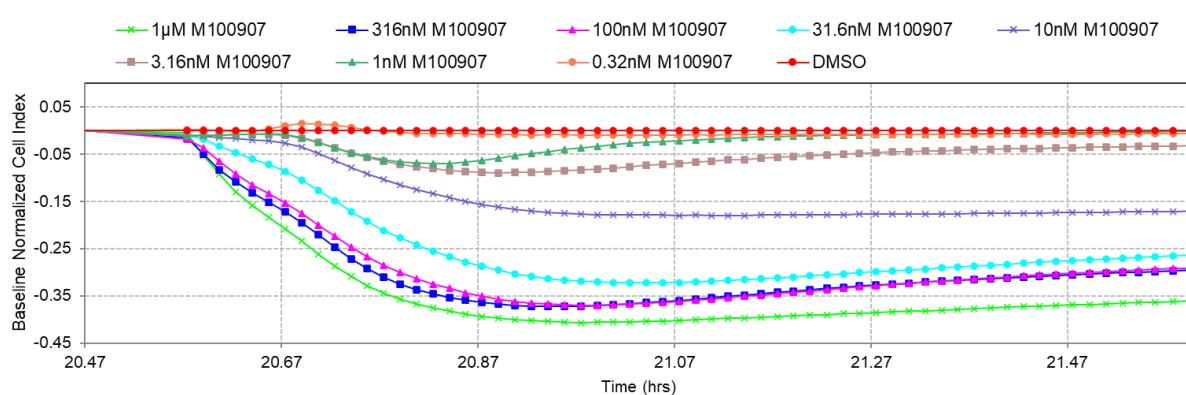

INSIGHTS GENERATED


Real-time, whole-cell kinetic data enables deep, mechanistic insight into GPCR signalling

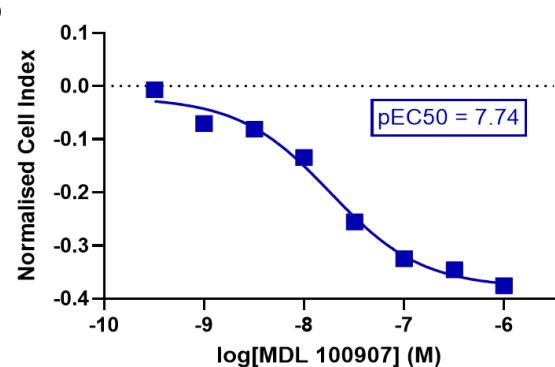
Interrogation of **complex signalling pathways** with high resolution, especially useful for receptors with **unknown signalling profiles** (eg. Orphan receptors)

Gain a **differentiated** view of GPCR pharmacology that helps uncover **nuanced signalling signatures and identify functional selectivity**

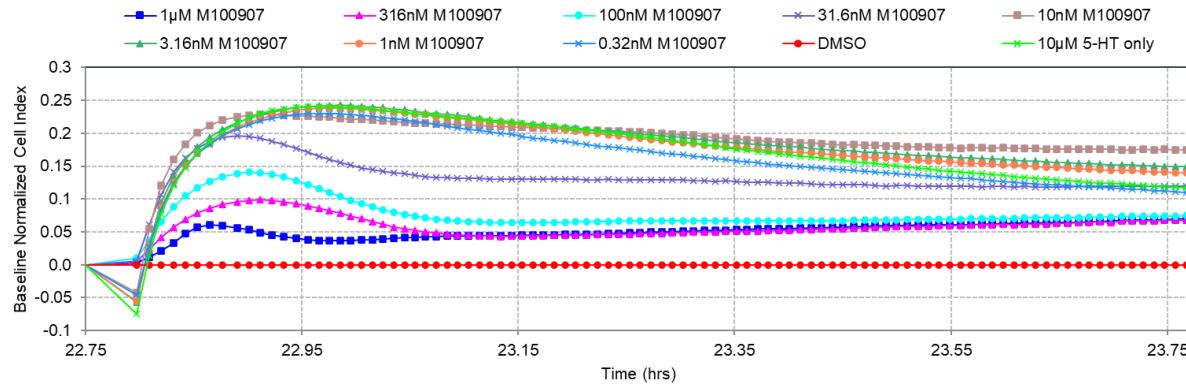
YOUR PARTNER FOR SUCCESS IN GPCR DRUG DISCOVERY



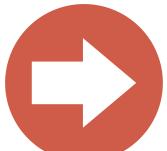
CASE STUDY


5-HT_{2A} is a GPCR which is abundantly expressed in the CNS and an attractive clinical target for anxiety, psychosis and OCD.

MDL 100907 is characterised in the literature as a selective 5-HT_{2A} antagonist. Profiling of MDL 100907 in the xCELLigence assay revealed that this ligand also displays inverse agonist activity at the 5-HT_{2A} receptor. This result highlights the importance of incorporating orthogonal assay approaches into pre-clinical drug safety and efficacy profiling.


A

B


C

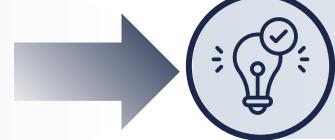
D

Figure 1. MDL 100907 shows antagonist and inverse agonist activity at the 5-HT_{2A} receptor in the label-free xCELLigence assay. Baseline normalised cell index trace for MDL 100907 alone (A) or 10nM 5-HT (EC₈₀) following pre-treatment with the indicated concentrations of MDL 100907 (C). Normalised cell index values plotted as a dose-response curve for MDL 100907 alone (B) or dose-inhibition curve for MDL 100907 pre-treatment, plotted at the peak agonist response (D).

β -ARRESTIN RECRUITMENT bio:ascent

HOW IT WORKS

A live cell, luminescence based protein-protein interaction assay measuring β -arrestin recruitment to GPCRs in real time



TECHNOLOGY

Promega NanoBiT Arrestin

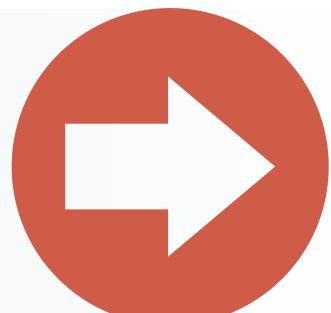
KEY FEATURES

Generic method for all GPCRs;
useful for non G protein pathways

Useful for **biased agonism** studies

Useful for orphan receptors where endogenous ligands/
coupling pathways are unknown

Readily **scaled** for HTS


INSIGHTS GENERATED

Uncovers GPCR pharmacology **beyond traditional G-protein signalling**

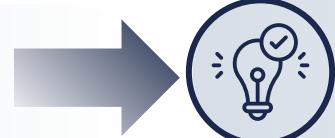
Quantifies **ligand bias**. Helps determine whether compounds favour G-protein signalling, β -arrestin recruitment, or demonstrate a balanced profile

Supports the development of **safer, more targeted therapeutics** by enabling **precise control** over downstream signalling pathways

YOUR PARTNER FOR SUCCESS IN GPCR DRUG DISCOVERY

HOW IT WORKS

Fluorescent dye and high speed plate imaging system detects intracellular Ca^{2+} changes



TECHNOLOGY

FLIPR Penta

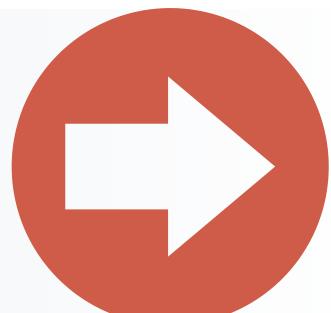
KEY FEATURES

Pathway specific for **G_{aq} signalling**

Can be used with **G_{a16}-engineered** systems, enabling receptors to be “forced” through the calcium pathway for rapid functional assessment

Highly **sensitive** to early signalling

FLIPR Penta - extremely **high-throughput**


INSIGHTS GENERATED

Captures **full real-time** fluorescence traces, going far **beyond simple max-min endpoints**

Detailed **interrogation of signalling behaviour**, including onset time, peak amplitude, and the rate of signal decay as cells return to baseline

Rich kinetic insight supports deeper mechanistic understanding, ligand differentiation, and confident decision-making

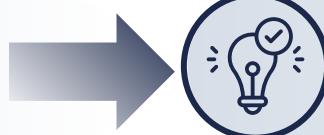
YOUR PARTNER FOR SUCCESS IN GPCR DRUG DISCOVERY

IP₁ ACCUMULATION

bio:ascent

HOW IT WORKS

Measures accumulation of IP₁ caused by Gaq activation using TR-FRET



TECHNOLOGY

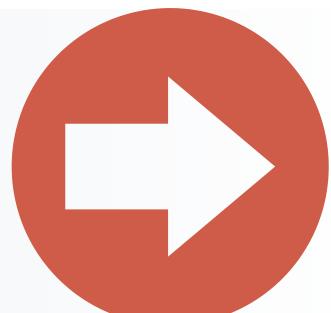
HTRF IP-One assay

KEY FEATURES

Suitable for **Gaq-coupled GPCRs**

Functional assay for live cells which works with **many cell systems**

Robust assay suitable for **miniaturisation and HTS** cascades


INSIGHTS GENERATED

Directly **quantifies Gaq-coupled GPCR signalling**

Unlike rapid and transient calcium flux, IP₁ accumulation provides a **longer, more forgiving measurement window**, delivering a stable and **highly reproducible** readout

Ideally suited for HTS applications - this assay is an **excellent choice for reliable compound screening**

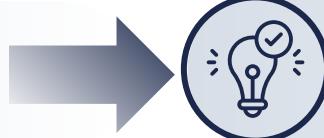
YOUR PARTNER FOR SUCCESS IN GPCR DRUG DISCOVERY

cAMP MEASUREMENT

bio:ascent

HOW IT WORKS

Measures intracellular cAMP levels as a readout of Gas or Gai/o signalling



TECHNOLOGY

Promega Glosensor cAMP
Bellbrooks transcreener cAMP
Revvity HTRF cAMP

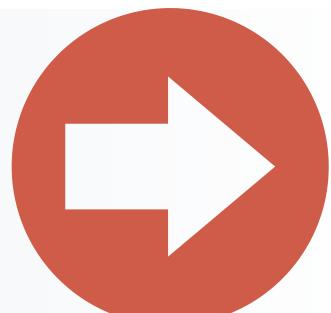
KEY FEATURES

Highly **sensitive**, quantitative readout

Versatile - suitable for **both Gas and Gai** receptors

High-throughput format ideally suited to HTS

Flexible - performs equally well in endogenously expressing cell lines as in stably or transiently transfected systems

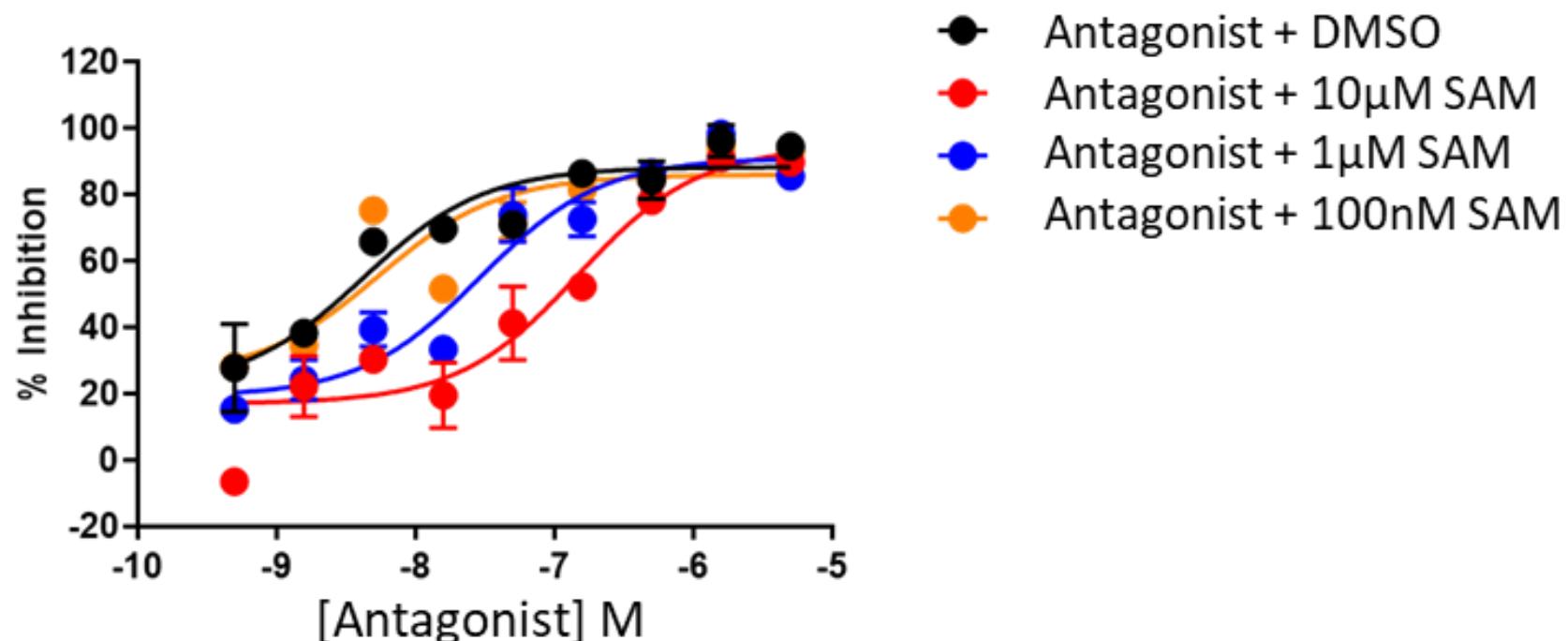

INSIGHTS GENERATED

Reliable insight into compound behaviour and receptor signalling - kinetic insight empowers deeper mechanistic understanding and more confident decision-making

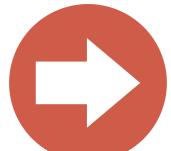
Excellent for **SAR generation and medicinal chemistry** due to quantitative data

High sensitivity enables detection of **weak agonists, partial agonists, and inverse agonists**

YOUR PARTNER FOR SUCCESS IN GPCR DRUG DISCOVERY



CASE STUDY


During a long running Lead Optimisation project on a GPCR target, we observed some very steep SAR, which was unexpected.

The possibility of silent allosteric modulators (SAMs) was investigated using the functional cAMP primary assay. We pre-incubated \pm the suspected SAM with a known allosteric antagonist before the addition of the agonist.

Dis-inhibition of the antagonist with no agonist activity on its own indicates that the compound is indeed binding at the same site but doing so without causing a functional effect.

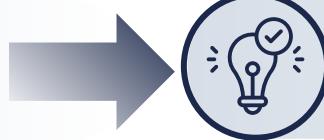
Figure 2. Allosteric antagonist dose response curve \pm increasing concentrations of potential silent allosteric modulator in the presence of agonist EC₈₀. Data are expressed as percent inhibition of the agonist EC₈₀ response and are the mean \pm SEM of a minimum of 4 replicates.

HOW IT WORKS

Measures phosphorylation of ERK1/2, a key downstream signaling output of many GPCRs

TECHNOLOGY

Alphascreen Phospho-ERK assay



KEY FEATURES

Universal readout - suitable for Gaq-, Gai/o-, and some Gas-coupled receptors

Sensitive technique which can detect **weak or partial agonists**

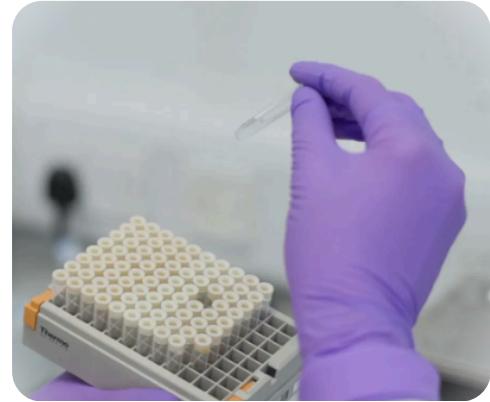
Captures **both** G-protein and β -arrestin mechanisms

INSIGHTS GENERATED

Provides a readout of integrated GPCR signalling - especially valuable for receptors that are **difficult to monitor using traditional second-messenger assays**

Captures ERK as a convergence point for both G-protein dependent and β -arrestin mediated pathways, offering a **broad, biologically meaningful view** of receptor activity

Enables **reliable detection** of ligand-driven signalling events


YOUR PARTNER FOR SUCCESS IN GPCR DRUG DISCOVERY

HOW IT WORKS

Directly monitors G-protein activation by tracking the separation of tagged Ga and Gy subunits

TECHNOLOGY

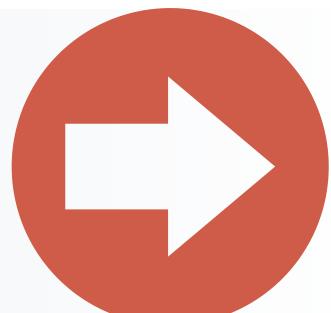
Bioluminescence Resonance Energy Transfer (BRET)

KEY FEATURES

Reports proximal, immediate G-protein engagement, letting you see exactly **which G-protein family a compound activates**

Delivers a **depth of mechanistic pharmacology** that traditional assay formats simply cannot achieve

Optimised constructs available for nearly every Ga, G β , and Gy subtype


INSIGHTS GENERATED

Enables **precise mapping** of GPCR G-protein coupling and signaling bias - reveals exactly which G-proteins a receptor couples to, and the strength of those interactions

Enables the discovery and optimisation of ligands with **finely tuned, G-protein-specific bias**

Uncovers **unique signalling signatures** - particularly valuable when working with first-in-class compounds or orphan receptor programmes

YOUR PARTNER FOR SUCCESS IN GPCR DRUG DISCOVERY

READY TO MOVE YOUR
GPCR PROJECT
FORWARD?

INFO@BIOASCENT.COM