Overweight & obesity Adults **39**% Children **18**% 1 in 10 globally go hungry 70% of fresh water is used for agriculture **15 tonnes water** to produce **1kg beef** Our current **eating habits** responsible for **22**% responsible for 22% (11 million) deaths Why our global food system needs to needs to change mention Agriculture Single biggest driver of biodiversity loss Livestock outweigh wild animals by **15 to 1** Over **50**% of **habitable land** used for 32% all deaths caused by CVD 523 million living with CVD 438 million living with **T2D** Excessive ∕ fertiliser → use \ **Disrupts** natural nitrogen & phosphorus flows Releases **nitrous oxide GHG** into the atmosphere Cause eutrophication of **78**% of oceans dead zones **32**% of ocean acidification resulting in loss of coral reefs 2 billion micronutrient deficient Fruit & veg intakes: 267g/d WHO recommended 400g/d Fibre intakes < 20g pppd 30% consume saturated fat in excess Food waste = 7% food system GHG emissions Each year = 1.3 billion tonnes One third food produced # Why our food system needs to change ### HEALTH ### The global obesity epidemic¹ - 39% adults are overweight 13% of which are obese - 18% of children are overweight of which 6-8% are obese ### In Europe - 53% of adults are overweight or obese² - 14% boys and 10% girls aged 7-8 are overweight or obese³ ## Globally, our current eating habits are responsible for 6 - 11 million adult deaths = ~22% of total deaths - 255 million life years lost due to ill-health, disability or premature death (DALYs) - In Europe: 45-59% of DALYs due to heart disease, stroke, diabetes and colorectal cancer⁷ ### Non-communicable diseases¹⁰ - Cardiovascular disease (CVD) is the biggest killer globally - 32% of all deaths - In Europe, 37% of all deaths are due to CVD - 523 million (7%) people globally living with CVD - In Europe, 60 million (12%) - 438 million (6%) people globally living with type II diabetes - In Europe: 10.6% (52 million) adults aged over 25 ### **Nutrient imbalance** - 2 billion individuals globally with micronutrient deficiencies¹² - Global average intakes of fruit and vegetables does not meet recommended intakes⁶ - Average global intake 267g pppd vs WHO recommendations of 400g pppd - 86% European population consume <5 portions daily¹³ - 34% of Europeans do not consume fruit and vegetables on a daily basis¹³ - ~90% global population exceeding WHO salt intake recommendations^{14,15} - >30% of the global population and the majority of Europeans consume saturated fat in excess to recommendations (>10% total energy)^{16,17} - Average global fibre intakes 20g per day^{18,19} - Whole grain intakes below optimal for health⁶ # Global hunger and food insecurity²¹ - 1 in 10 people globally go hungry - 1 in 3 do not have adequate food ### **ENVIRONMENT** ### Climate change - Food system is responsible for 34% of global greenhouse gas emissions⁴ - 57% attributable to livestock and animal food production vs 29% for plant food production. Much of this is due methane production, fertilizer use and land use change⁵ ### Land use change - Over 50% of habitable land globally is used for agriculture⁸ - Agriculture is the single biggest driver of deforestation (90%)⁹ - Conversion of natural land and forest to pasture and crop land destroys natural carbon sinks and contributes to loss of biodiversity #### Fresh water use11 - 70% of fresh water withdrawals are used for agriculture - It takes 15 tonnes of water to produce 1kg of beef ### Nitrogen & phosphorus flows²⁰ - Fertiliser use has increased 9-fold since 1960s to keep up with our high demand for high volume foods - Biggest culprit is our current and growing meat consumption which requires a high volume of fodder which in turn requires larger crop yields achieved only through higher fertilizer use - Excessive fertiliser use disrupts natural N and P flows - Excess nitrogen use increases nitrous oxide one of the most potent GHGs in the atmosphere - Fertiliser run offs pollute water ways and are the main drivers of eutrophication (pollution of our waterways and oceans) - If we used agriculture land to grow more legumes we would not need to use as much fertilizer. Legumes help transfer atmospheric nitrogen into the ground to act as fertilizer (Nitrogen fixing) ### Ocean acidification & eutrophication²² - 32% of ocean acidification is due to carbon dioxide (GHG) absorption from the atmosphere – resulting in loss of coral reefs and inability for some marine life to form outer shells and skeletons - 78% of eutrophication of oceans and lakes forming dead zones are due to N and P fertilizer and animal waste run offs ### Biodiversity loss^{23,24} - Agriculture is the single biggest driver of biodiversity loss - Global rate of species extinction is at least tens if not hundreds of times higher than the average rate over the past 10 million years - Natural habitats lost as land converted to grazing or crop land, oceans are over-fished, and soil and waterways are polluted - Livestock now outweigh wild animals by 15 to 1 - 30% of fisheries are over-fished²⁰ #### Food waste^{25,26} - Contributes 6-7% of global food system GHG emissions - 1.3 billion tonnes food wasted each year from farm to fork - Represents one third of food produced - Wasting land use and loss of carbon sink, excess N & P fertilizer use polluting oceans and soil and wasteful use of scarce water supplies - Decomposing organic matter releases methane, a highly potent GHG ## References - WHO. Obesity & overweight (based on 2016 statistics). WHO June 2021. Accessed Feb 2022. https://www.who.int/news-room/fact-sheets/detail/obesity-andoverweight#:~:text=In%202016%2C%20more%20than%201.9%20billion%20 adults%20aged%2018%20years,women)%20were%20obese%20in%202016 - Eurostat. Overweight and obesity BMI statistics. Eurostats 2019. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Overweight_and_obesity_-_BMI_statistics - 3. WHO. High rates of childhood obesity alarming given anticipated impact of COVID-19 pandemic. European Association for the Study of Obesity (EASO) 2021. https://easo.org/high-rates-of-childhood-obesity-alarming-given-anticipated-impact-of-covid-19-pandemic/#:~:text=ln%20some%20countries%20of%20the,living%20with%20-overweight%20or%20obesity. - Crippa M, Solazzo E, Guizzardi D et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2021;2:198-201 doi: 10.1038/s43016-021-00225-9 - Xu X, Sharma P, Shu S, et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food. 2021;2:724–732. https://doi.org/10.1038/s43016-021-00358-x - 6. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958-1972. doi: 10.1016/S0140-6736(19)30041-8 - Schwingshackl L, Knüppel A, Michels N, et al. Intake of 12 food groups and disability-adjusted life years from coronary heart disease, stroke, type 2 diabetes, and colorectal cancer in 16 European countries. Eur J Epidemiol 2019;34:765–775. https://doi.org/10.1007/s10654-019-00523-4 - 8. FAO Statistics Division. Sustainable food and agriculture. Land use in agriculture by the numbers. FAO FAO May 2020. Accessed Feb 2022. https://www.fao.org/sustainability/news/detail/en/c/1274219/ - 9. FAO Remote Sensing Survey. COP26: Agricultural expansion drives almost 90 percent of global deforestation. FAO Nov 2021. Accessed Feb 2022. https://www.fao.org/newsroom/detail/cop26-agricultural-expansion-drives-almost-90-percent-of-global-deforestation/en - Global Health Data Exchange. GBD Results Tool 2019 datasets. Institute for Health Metrics and Evaluation – University of Washington USA. Accessed Feb 2022. http://ghdx.healthdata.org/gbd-results-tool - FAO. Water for sustainable food and agriculture. A report produced for the G20 Presidency of Germany. FAO, Rome; 2017. Accessed on line: https://www.fao.org/3/i7959e/i7959e.pdf - 12. Swinburn BA, Kraak VI, Allender S, et al. The global syndemic of obesity, undernutrition, and climate change: the lancet commission report. Lancet. 2019;393(10173):791-846. doi: 10.1016/S0140-6736(18)32822-8 - 13. Eurostat. Fruit and vegetable consumption statistics. Eurostat Statistics Explained 2014. Accessed Feb 2022. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Fruit_and_vegetable_consumption_statistics - 14. Powles J, Fahimi S, Micha R, et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open. 2013;3(12):e003733. doi:10.1136/bmjopen-2013-003733 - WHO. Salt reductions. WHO April 2020. Accessed Feb 2022. https://www.who.int/news-room/fact-sheets/detail/salt-reduction - 16. Micha R, Khatibzadeh S, Shi P, et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ. 2014 Apr 15;348:q2272. doi: 10.1136/bmj.q2272. - Eilander A, Harika RK, Zock PL. Intake and sources of dietary fatty acids in Europe: Are current population intakes of fats aligned with dietary recommendations? Eur J Lipid Sci Technol. 2015;117(9):1370-1377. doi:10.1002/ejlt.201400513 - 18. Reynolds A, Mann J, Cummings J, et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393: 434–45. http://dx.doi.org/10.1016/S0140-6736(18)31809-9 - Stephen AM, Champ MM-J, Cloran SJ, et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev. 2017;30(2):149-190. doi: 10.1017/S095442241700004X - 20. Willett W, Rockstrom J, Loken B et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447-492. doi: 10.1016/S0140-6736(18)31788-4 - 21. FAO. The state of food and nutrition security in the world 2021. https://www.fao.org/3/cb4474en/online/cb4474en.html - 22. Poore J & Nemecek T. Reducing food's environmental impacts through producers and consumers. Science. 2018;360(6392):987-992. https://doi.org/10.1126/science.aaq0216 - Benton T, Bieg C, Harwatt H, et al. Food system impacts on biodiversity loss. Three levers for food system transformation in support of nature. Chatham House, 2021. Accessed Feb 2022. https://www.chathamhouse.org/2021/02/food-system-impacts-biodiversity-loss - Bar-On YM, Phillips R & Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA. 2018;115(25):6506-6511. doi: 10.1073/pnas.1711842115 - 25. FAO. Food loss and waste database. Take an in-depth look at what food is being lost and wasted, and where. FAO Feb 2022. Accessed Feb 2022. https://www.fao.org/food-loss-and-food-waste/flw-data - 26. WRAP. Food and drink. Developing a sustainable food system. WRAP. Accessed Feb 2022. https://wrap.org.uk/taking-action/food-drink