

Fractional muscle protein synthesis

1-2 % per day

(0.04 - 0.14 %·h⁻¹)

Muscle reconditioning

Jay

Muscle deconditioning

- immobilisation
- sarcopenia
- cancer cachexia
- COPD
- type 2 diabetes
- cardiovascular disease

Muscle mass maintenance

Main anabolic stimuli

'You are what you just ate'

Plant based proteins The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption¹ Stephan van Vliet, ^{3,3} Nicholas A Burd. ^{3,5} and Luc JC van Loon³* ³Department of Kinosiology and Community Hodah, University of Illinois at Urbana-Champaign, Urbana, IL; and ³Department of Human Movement Sciences, Facilty of Health, Medicine, and Life Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands van Vliet et al., J Nutr. 2015

Synergy between exercise and food intake

Physical activity prior to food intake

'You are more of what you just ate'

What causes muscle loss with aging

Marlou L. Dirks,¹ Benjamin T. Wall,¹ Bas van de Valk,¹ Tanya M. Holloway,² Graham P. Holloway,² Adrian Chabowski,² Gijs H. Goossens,¹ and Luc J.C. van Loon¹

One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation

Diabetes 2016;65:2662-2675 | DOE 10.2337/0015-1661

Decline in physical activity

'You are less of what you just ate'

Clinical relevance

Attenuate muscle mass and/or strength loss

Conclusions Protein ingestion and muscle contraction stimulate muscle tissue protein synthesis Physical (in)activity (de)sensitizes skeletal muscle tissue to the anabolic properties of dietary protein ingestion Protein is required to support muscle conditioning in both health and disease

Attenuate muscle loss during disuse Remain physically active as much as possible Apply exercise mimetics when appropriate Consume a more protein dense diet Commit to an active rehabilitation program

