

Groundwater in Mountain Regions

What happens during a drought?

- Groundwater levels drop
- Wells may go dry
- Lower baseflow to streams
- Potential impacts to environmental flows

Goals of CMN Project

Goal 1: Develop a quantitative drought indicator for groundwater level

Goal 2: Evaluate the performance of the indicator and decision-support tools that are used during water scarcity

Goal 3: Identify drought sensitive aquifers in the Okanagan Basin

April Gullacher, MSc student

Adam Mitton, MSc student

The Team

- Jon Goetz, Julie-Ann Ishikawa, Robin Pike, Jillian Kelly (ECCS)
- Michele Lepitre, Jacqueline Shrimer, Tyler Anderson (FLNRORD)
- Carl Mendoza (U of A), Tom Gleeson (UVic)
- Anna Sears (OBWB), Tessa Terbasket and Chani Welch (ONA)

Alex Nott, MSc student

Top 3 Successes

- Province-wide classification of groundwater level response types
 - BC Water Science Series Report (Gullacher et al. 2021)
- Modeling exchanges between groundwater and surface water in Bertrand Creek Watershed
 - BC Water Science Series Report (Nott and Allen 2020).
- 3. Highly successful field project to characterize associations between macroinvertebrates, stream conditions and groundwater exchanges.
 - Manuscript for Frontiers in Earth Sciences Journal (Mitton et al. in prep)
 - MSc thesis (Mitton) completion by end of summer.
 - Mitton to begin PhD in September.

Research Outcomes: Okanagan Basin

- April Gullacher is working towards a groundwater level drought indicator that can be used across BC to "predict" whether groundwater levels will be significantly lower than normal due to drought.
- We posed the question, "What climate-related factors have the strongest control on summer groundwater levels?"
- Started with Provincial
 Observation Wells in South
 Central BC (2005-2020) and
 selected wells that had the most
 complete records.

Generalized Additive Models (GAMs)

Which factors are most associated with summer groundwater levels?

Table of R² values

GAM 1	GAM 2	GAM 3	GAM 4
max SWE	max SWE	max SWE	max SWE
max spring	max spring	min spring	min spring
temp	temp	temp	temp
max	max	min	min
summer	summer	summer	summer
temp	temp	temp	temp
	Niño 3.4 index		Niño 3.4 index

1b	Stream	nflow-c	driven	(Well 3	64)	
					ec	If = 1,000
1-						
₽ 0-						
0- Effect		/				
-1.	/					
-2 -						

Aquifer type and response mechanism	Well number	GAM 1	GAM 2	GAM 3	GAM 4
1b	Well 217	0.770	0.885	0.074	0.065
Streamflow	Well 364	0.785	0.942	0.625	0.61
4a Streamflow	Well 381	0.651	0.966	0.578	0.616
4b Recharge	Well 262	0.784	0.772	0.784	0.702
	Well 344	0.988	0.984	-0.195	-0.100
adiana Cant 20	Well 384	0.182	0.828	0.774	0.896

Gullacher and Allen, GeoNiagara Conference Proceedings, Sept 2021)

Research Outcomes: Bertrand Creek Watershed, Lower Fraser Valley

- Our second study area is Bertrand Creek Watershed
- Two components
- 1) Numerical modeling of groundwater flow in the watershed (Alex Nott)
- 2) A field study on aquatic habitat characterization in relation to environmental flow needs (Adam Mitton)

Bertrand Creek Watershed

Pumping at 20,000 m³/day across the watershed results in 4750 m³/day less water in the stream

Streamflow Depletion due to Pumping

Nott and Allen (GeoNiagara Conference Proceedings, Sept 2021)

Top 2 Challenges

- 1. COVID travel restrictions meant we could not travel to the Okanagan to do field work, so we focused on the Fraser Valley field site.
- 2. Difficulty with analysis of BC observation well data.
 - Many wells have missing data, so the statistics were skewed. Have had to do extensive QA/QC to eliminate wells from the analysis and identify wells suitable for analysis – completed for Okanagan. Very time consuming.

